Bibliography
1. J. P. Holman, Heat Transfer. McGraw-Hill Education, 2002.
2. E. Kreyszig, Advanced Engineering Mathematics. John Wiley & Sons, 7th ed., 1993.
3. G. Davies, R. Fenner, and E. R.W. Lewis, Background to Benchmarks. NAFEMS: Glasgow, 1993.
4. G. de travail Thermique 2D et 3D et thermoelasticite, Commission Validation des progigiels de calcul de Structures. Societe Francaise des Mecaniciens, 1989.
5. W. M. Rosenshaw, J. P. Hartnett, and E. N. Ganic, Handbook of Heat Transfer Fundamentals. McGrawHill, 2nd ed., 1985.
6. L. C. Thomas, Fundamentals of Heat Transfer. Prentice-Hall Inc., 1980.
7. F. M. White, Fluid Mechanics. McGraw-Hill Education, 5th ed., 2003.
8. F. M. White, Viscous Fluid Flow. McGraw-Hill Education, 2nd ed., 1991.
9. J. F. Steffe, Rheological Methods in food processing. Freeman Press, 1996.
10. A. Y. Cengel, Heat and mass transfer. McGraw-Hill, 2007.
11. N. Govinda, M. Ramamoorthy, and K. Sarma, Study of transition zone of laminar ow at the entrance to a pipe based on varying friction. Indian Institute of Science, 1966.
12. W. Wigley, A Comparison of Experimental and Calculated Wave Profiles and Wave Resistances for a Form Having Parabolic Waterlines, in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, pp. 144 159, 1934.
13. W. Thomson, On ship waves, in Proceedings of the Institution of Mechanical Engineers, vol. 38, pp. 409 434, 1887.
14. J. Lighthill, Waves in fluids. Cambridge University Press, 2001.
15. C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, vol. 39, no. 1, pp. 201 225, 1981.
16. H. Kajitani, H. Miyata, H. Tanaka, H. Adachi, M. Namimatsu, and S. Ogiwara, The summary of the cooperative experiment on Wigley parabolic model in Japan. 1983.
17. B. Poling, J. Prausnitz, and J. O’Connell, The properties of gases and liquids. McGraw-Hill Education, 5th ed., 2001.
18. U.Ghia, K. Ghia, and C. Shin, High-re solutions for incompressible ow using the navier-stokes equations and a multigrid method, Journal of Comp. Physics, vol. 48, pp. 387 411, 1982.
19. D. Gartling, A test problem for out ow boundary conditions ow over a backwardfacing step, Computers and Fluids Int. J. Numerical Methods in Fluids, vol. 11, pp. 953 967, 1990.
20. E. Erturk, Numerical solution of 2d steady incompressible ow over a backwardfacing step, part 1: High reynolds number solutions, Computers and Fluids, vol. 37, pp. 633 655, 2008.
21. J. D. A. Jr, Modern Compressible Flow. McGraw-Hill, 2th ed., 1990.
22. T. Fukue, T. Hatakeyama, M. Ishizuka, and K. Koizumi, Relationship between ow pattern in front of fans and decreases of fan performance, in Proc. 22nd International Symposium on Transport Phenomena, Paper, no. 152, 2011.
23. J. Slater, Nparc alliance validation archive, 2008.
24. D. G. Raithby and H. G. T. Hollands, Natural convection, in Handbook of Heat Transfer (W. M. Rohsenow, J. Hartnett, and Y. I. Cho, eds.), McGraw-Hill Education, 3rd ed., 1998.
25. F.P.Incropera and D.P.DeWitt, Fundamentals of Heat and Mass Transfer. Fifth Edition, 2002.
26. J. Park, K. Kwon, and H. Choi, Numerical solutions of ow past a circular cylinder at Reynolds numbers up to 160, KSME International Journal, vol. 12, pp. 1200 1205, 1998.
27. B. Sharman, F. Lien, L. Davidson, and C. Norberg, Numerical prediction of low Reynolds number ows over two tandem circular cylinders, International Journal for Numerical Methods in Fluids, vol. 47, pp. 423 447, 2004.
28. Ashrae, ASHRAE Handbook Fundamentals. Ashrae, 1997.
29. White, F. M. (1991) Viscous Fluid Flow, New York, 2nd edition, McGraw-Hill, 614 p.
30. Driver, D.M. and Seegmiller, H.L. (1985) Features of a reattaching turbulent shear layer in divergent channel ow, American Institute of Aeronautics and astronautics, Vol. 23/02/02, 163-171 p.
31. Yoder, D.A. (1998) NPARC Alliance Validation Archive, http://www.grc.nasa.gov/WWW/wind/valid/backstep/backstep.html
32. B.Ruth, H.Yang., An Empirical Correlation for Velocity Distribution of Turbulent Fluid Flow, A. I. Ch. E. Journal, Vol.3, pp 117, 1957.
33. T. Ghosh, Logarithmic Velocity Profile for Turbulent Flow in Straight Rough Pipe and Evaluation of Karman Constant with Boundary Layer Reynolds Number- A Complete Solution, International Journal of Scientific & Engineering Research, Vol. 7, Issue 2, 2016
34. White, F. M. (2008) Fluid Mechanics, New York, 6th edition, McGraw-Hill, 864 p.
35 Belov, A., Martinelli, L., and Jameson, A. (1995), A New Implicit Algorithm with Multigrid for Unsteady Incompressible Flow Calculations, 33rd Aerospace Science Meeting and Exhibit, January 9-12, Reno, NV.
36. Alexander, G.: Aerospaceweb.org :www.aerospace.org/question/atmosphere/q0126.shtml
37. A. Yunus, Heat and Mass Transfer, New York, 3rd edition, McGraw-Hill, 901 p, 2007
38. F. White, Viscous Fluid Flow, New York, 2nd edition, McGraw-Hill, 614 p., 1991
39. Warren M. Rohsenow; James P. Hartnett; Young I. Cho: Handbook of Heat Transfer. FORCED CONVECTION, INTERNAL FLOW IN DUCTS, Chapter (McGraw-Hill Professional, 1998, p.5.67
40. F.P.Incropera and D.P.DeWitt: Fundamentals of Heat and Mass Transfer, Fifth Edition, 2002, pp 561-562, Wiley
41. T.H.Kuehn and R.J.Goldstein, An Experimental Study of Natural Convection Heat Transfer in concentric and Eccentric Horizontal Cylinders, Journal of Heat Transfer, 1978: 100:635-640.
42. W.M.Rosenshaw, J.P.Hartnett, E.N.Ganic, Handbook of Heat Transfer Fundamentals, 2nd Edition McGraw-Hill, 1985: p.4 - 60
43. W.M.Rosenshaw, J.P.Hartnett, Y.I.Cho: Handbook of Heat Transfer, Third Edition, 1998, McGraw-Hill, p 4.21
44. DeWitt, D.P.and Incropera, F.P.: Fundamentals of Heat and Mass Transfer 5th , Chapter 9, Ed . New York: John Wiley Sons Inc, 2002, pp 545-546.
45. NASA, https://turbmodels.larc.nasa.gov/flatplate.html
46. NASA, https://turbmodels.larc.nasa.gov/flatplate_grids.html
47. NASA, https://turbmodels.larc.nasa.gov/flatplate_sst.html
48. Bird, G.A. (1994). Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford.
49. Bigham, S., Pourhasanzadeh M., Evaporation, Condensation and Heat transfer, Chapter: 19: Fluid Flow and Heat Transfer
50. Maxwell, J.C. (1879). On stresses in rarefied gases arising from inequalities of temperature, Philos. Trans. Roy. Soc., Part 1, 170, pp.231-256.
51. http://www.grc.nasa.gov/WWW/k-12/ airplane/isentrop.html
52. http://www.engapplets.vt.edu/fluids/CDnozzle/index.html
53. Betts, P.L. and Bokhari, I.H., 2000, Experiments on turbulent natural convection in an enclosed tall cavity. Int. J. Heat & Fluid Flow, Vol 21, pp 675-683.
54. Monson, D. J. and Seegmiller, H.L., 1992, An experimental investigation of subsonic flow in a two-dimensional U-duct. NASA Technical Memorandum 103931
55. H. Schlichting, Boundary-Layer Theory, McGraw-Hill series in mechanical engineering, Seventh Edition, 1979
56. J. Stefan. Über einige Probleme der Theorie der Wämeleitung. Sitzungs-Berichte Wien. Akad. Mat. Natur., 1890.
57. L. I. Rubinstein. The Stefan problem, volume 27. Translations of Mathematicals Monographs, 1971.
58. König-Haagen, A., Franquet, E., Pernot, E., & Brüggemann, D. (2017). A comprehensive benchmark of fixed-grid methods for the modeling of melting. International Journal of Thermal Sciences, 118, 69-103.