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3 Introducing the Flow Solver Reference Manual
The flow solver computes a solution to the non-linear, partial differential equations for the conservation of mass, 
momentum, energy, and general scalars in general complex 3D geometries. It uses an element-based finite volume 
method and iterative Krylov methods to discretize and solve the governing equations.

Physical models include laminar or turbulent, incompressible or compressible flow, natural convection, rotating frame 
of reference, non-newtonian fluids, porous blockages, mixtures, humidity, condensation and evaporation at walls, and 
general boundary conditions for fluid flow and heat transfer. Details of the mathematical model, the discretization of 
the equations, and of the solution method used in the flow solver are presented in the following sections of this 
document.
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4 Nomenclature

Symbol Description Dimensions

Area m2

Damping function constant 3.8

Damping function constant 63

k-   turbulence model constant 0.09

Cunningham correction factor -

 k-   turbulence model constant 1.44

 k-   turbulence model constant 1.92

Drag coefficient -

Added mass coefficient -

Specific heat at constant pressure J/kg K

Brownian diffusivity m2/s

Particle diffusivity m2/s

Turbulent diffusivity m2/s

Water vapor diffusivity m2/s

Scalar diffusion coefficient m2/s

Diameter m
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Symbol Description Dimensions

k-   turbulence model constant 8.43

Internal energy J

Convective flux term -

Damping function -

Damping factor -

Van Driest damping factor -

Damping function -

Viscous flux term -

Gravitational acceleration constant m2/s

Enthalpy of the fluid J/kg 

Heat transfer coefficient W/m2 K

Head loss coefficient -

Total enthalpy J/kg

Turbulence intensity -

Diffusive mass flux kg/m2 s

Permeability m2

Consistency index -
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Symbol Description Dimensions

Knudsen number -

Turbulence kinetic energy J/kg 

Thermal conductivity W/m K

Specified equivalent sand grain roughness.  m

Boltzmann constant 1.3806488*10-23 J/K

Turbulent eddy length scale m

Mass flow rate kg/s

Mass flux kg/m2s

Unit normal vector -

Nusselt number -

Pressure Pa

Prandtl number -

Heat flux W/m2

Universal gas constant 8.3144 J/mol K 

Location vector m

Internal loss coefficient m-1

Humidity diffusion resistance s/m
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Symbol Description Dimensions

Discrete convective flux -

Specific gas constant J/kg K

Rayleigh number -

Reynolds number -

Radius m

Modulus of the mean strain rate -

Sutherland constant -

Closed surface m2

Mean rate-of-stain tensor s-1

Energy source term W/m3

Mass source kg/m3 s

Momentum source N/m3

Schmidt number  -

Temperature K

Discrete viscous flux -

Time s

Velocity m/s



Nomenclature

Flow Solver Reference Manual 11

Symbol Description Dimensions

Conserved quantity -

Mean flow velocity m/s

Relative velocity magnitude from a rotating frame m/s

Fluctuating velocity m/s

Shear velocity m/s

Volume of the domain m3

Mesh element volume m3

Molar volume of the gas m3/mol

Volume of a particle m3

Volume of the fluid domain m3

Volume flow rate m3/s

Weighting function -

Particle centroid trajectory m

Velocity of the control volume m/s

Molar fraction -

Non-dimensional wall distance -

Thermal diffusivity m2/s
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Symbol Description Dimensions

Coefficient of restitution -

Thermal expansion coefficient K-1

Effective diffusion coefficient -

Shear rate s-1

Kronecker delta function -

Dissipation rate of the turbulent kinetic energy m3/s3

Smoothing factor -

Avogadro's number 6.02214*1023 mol-1

Von Karman constant 0.41

Time constant s

Mean free path of the particle m

Dynamic viscosity Pa s

Turbulent viscosity Pa s

Kinematic viscosity m2/s

Rotational velocity vector of a rotating frame m/s

Density kg/m3

Water vapor density kg/m3



Nomenclature

Flow Solver Reference Manual 13

Symbol Description Dimensions

Turbulence model constant 1.0

Turbulence model constant 1.3

Wall shear stress Pa

Yield stress Pa

Mass fraction -

Angle degrees

Radial basis function -

Relative humidity -

Specific humidity -

Specific dissipation rate s-1

Rotational velocity vector rad/s
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5 Governing equations
A model can be comprised of multiple flow enclosures. Each enclosure is a separate group of three-dimensional 
elements that form a separate fluid domain from the remaining geometry. The physical scales of each enclosure, such 
as the length scale, time scale, pressure, and temperature are independent of the other enclosures. The flow solver 
solves governing equations separately for each flow enclosure.

5.1 Mass and momentum equations
The flow solver solves conservation equations for mass and momentum for general flow, which can be expressed in 
Cartesian coordinates and using the tensorial notation [1, 2, 3] as follows:

Mass conservation equation 

Momentum conservation equation

In these equations:

The Einstein convention is used (i, j, k = 1,2,3).
 and  are the components of the mean and the fluctuating velocity in the   direction.

 is the pressure.
 is the density of the fluid.
 is the dynamic viscosity of the fluid. 

   represents the turbulent (or Reynolds) stresses.
 is the source terms for momentum equation.

These equations are valid for both, incompressible and compressible flows.

The terms of the momentum conservation equation are:

The transient term
The convection term
The pressure gradient term 
The stress term 
The source term

The source term   can represent body forces or flow resistance forces:

For natural convection flows,   includes the buoyancy force. See Buoyancy force for more information.
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For flows through porous blockages,  contains additional resistance terms. See Flow resistance through 
porous materials for more information.

5.2 Energy equation
The instantaneous total energy equation [1] in tensorial notation is:

Total energy conservation equation 

where:

   is the internal energy.
   is the velocity magnitude.
   is the heat flux in the direction . 
   is a heat generation or heat sink per unit volume.

In energy conservation equation, the terms represent, in order:

The rate of energy gain per unit volume
The rate of energy input per unit volume due to convection
The rate of energy addition due to conduction 
The rate at which work is done on the fluid by pressure 
The rate of energy addition due to viscous forces (dissipation term)
The rate of heat generation by internal sources

The second and fourth terms in the above equation can be combined and using the definition of the total enthalpy, 
 as:

where    is the static enthalpy of the fluid and combining with total energy conservation equation, gives:

Energy conservation equation 

where   is the energy source term.  
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5.2.1 High speed equation

After modeling the conduction and taking the Reynolds average of energy conservation equation [1], it becomes:

This equation expresses the conservation of the total energy for example, the thermal energy plus the mechanical 
energy. It is valid for all flow situations, but you should limit it to supersonic flow regimes. Because the flow solver is not 
density based, hypersonic flows are not supported.

5.2.2 Low speed equation 

For low speed flows (Mach < 0.3), the energy equation is simplified for robustness and for round-off purposes. For low 
speed incompressible and compressible flows, the pressure work and dissipation terms in energy conservation 
equation are neglected. The simplified form of the energy equation has the mechanical energy subtracted from the 
total energy, and becomes a thermal energy equation [2]:

where:

 is the thermal conductivity.
 is the fluctuating static enthalpy. 

  is the turbulent or Reynolds flux.

This form of the equation ensures conservation of the thermal energy, and avoids round-off problems. The low speed 
form of the energy equation is used by default in the flow solver.

The transient term in the low-speed form of the energy equation should represent storage of internal energy, however, 
by default, it is implemented as a storage of enthalpy. In transient cases where the pressure changes in time, such as 
tank charging problems with ideal gas fluids, this approximation may lead to unacceptable errors. You can include 
pressure time derivative,  , to the right side of the energy equation by using the  INCLUDE DP/DT TERM IN 

LOW-SPEED ENERGY EQUATION  advance parameter, so that the correct energy storage rate is recovered. 

The viscous heating term (dissipation term) can be activated for the low speed energy equation by using 
the  INCLUDE_VISCOUS_HEATING  advanced parameter. This term should be included to the energy equation for 
the flows with high velocity gradients and incompressible flows. The term is computed on nodes based on the 
contributions of all surrounding nodes. In addition, a correction is added to account for the different flux calculation 
across a wall boundary. In this case this wall flux value is added to the existing value of nodes on wall boundaries.
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5.3 Scalar equation
In addition to the mass, momentum, and energy equations, the flow solver solves general scalar equations that have 
the following form:

where the mass fraction is defined as:

,   , and   represent the density of the main fluid, the density of the scalar for gas , and the density of 
the fluid mixture, respectively. 

  is the scalar diffusion coefficient.
  is the turbulent or Reynolds flux where   is the fluctuating mass fraction of the scalar.

The left hand side terms of the scalar equation are the transient term and the convective term, respectively, and the 
right hand side term is the diffusion term.

5.3.1 Modeling a passive scalar

The general scalar equation can be used to model a passive scalar. In this case, it is assumed that the second 
component is present in the main fluid in very small quantities.

 

 

The passive scalar does not have any influence on the flow. The fluid properties are that of the main fluid, and the 
properties of the second component are not needed.

The general scalar equation is also used for:

Modeling a gas mixture
Modeling humidity
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5.3.2 Temperature dependent diffusion coefficient

The flow solver supports temperature-dependent diffusion coefficient in active and passive scalar equations.

To use this functionality, do the following before you run your simulation:

Step 1. Add the following line in the user.prm file.

For more information on the user.prm file, see Flow solver files. 

VARIABLE_MOLECULAR_DIFFUSION_COEFFICIENT = TRUE  

Step 2. Specify the table for the molecular diffusion coefficient.

You specify the table in the flow .vdc  file, which you create using a text editor in your run directory. The following 

table lists the field values that you need to specify in the flow .vdc  file and indicates the values used in the example 
below:

Field Value Description Value from example

S int The number of tables 1

Name_S char The name of the affected scalar S Carbon_Dioxide_Gas

N int Length of the table 8

T_0 D_0 double Temperature, T_0, and molecular 
diffusion coefficient, D_0

0.00000 14.00000

... ... ... ...

T_N D_N double Temperature, T_N, and molecular 
diffusion coefficient, D_N

50.00000 19.00000

The temperature units must be consistent with the solution units.

Example

1
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Carbon_Dioxide_Gas
8
  0.00000    14.00000
  7.14286    14.71429
 14.28571    15.42857
 21.42857    16.14286
 28.57143    16.85714
 35.71429    17.57143
 42.85714    18.28571
 50.00000    19.00000

5.4 Equations of state
An equation of state is a constitutive equation which provides a mathematical relationship between thermodynamic 
state variables for a given material. With the mass, momentum, and energy equations, it completes the mathematical 
representation of your fluid model.

The following state variables need to be defined:

Density,  
Dynamic viscosity,  
Specific heat a constant pressure,   
Conductivity, 
Specific enthalpy, 

You define all of these material variables except the specific enthalpy in this software. These material variables can vary 
with time, temperature, pressure, or they can vary with both temperature and pressure (bivariate properties).

In the case of bivariate properties, and in the absence of the standard state models such as ideal gas, the flow solver 
reads the user-specified bivariate table, and then performs a bi-linear interpolation with respect to temperature and 
pressure in order to calculate the value of the state variables.

The flow solver uses the state variables differently depending if your fluid is a gas or a liquid.

When your fluid is a liquid, the density   and the specific heat   are assumed constant. The flow solver calculates the 
specific enthalpy, , from the energy equation, and uses the following equation to calculate the temperature :

•
•

Note

The flow solver differentiates between a liquid and a gas as follows:
If the gas constant, , is defined, the fluid material is a gas.
If the gas constant, , is not defined, the fluid material is a liquid.
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When your fluid is a gas, an equation of state is used to model the relationship between thermodynamic state variables.

The flow solver supports the following models that you specify in the software when you define the fluid material:

Ideal gas law
Redlich-Kwong real gas equation of state

The flow solver calculates the specific enthalpy,  , from the energy equation, and uses the following equation to 
calculate the temperature :

where  is the specific heat at constant pressure of the gas.

5.4.1 Ideal gas law

The ideal gas law equation of state used by the flow solver is given by:

where:

 is the pressure of the gas.
 is the temperature of the gas.
 is the density of the gas.

is the specific gas constant ( J/kg K in SI units).

5.4.2 Redlich-Kwong real gas equation of state

The Redlich-Kwong real gas equation of state is given by:

where:

  is the pressure of the gas.
  is the temperature of the gas.
  is the density of the gas.

 is the molar volume of the gas.
 is the universal gas constant (8.314472 J/mol K).

The constants   and   are defined as:
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where:

 is the critical pressure of the gas.
 is the critical temperature of the gas.

The Redlich-Kwong equation of state is more realistic than the ideal gas law at high pressure and valid when:
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6 Source term

6.1 Buoyancy force
For buoyancy-driven flows, the flow solver uses the following models:

Full gravity model for multiphase and multicomponent flow, or for the flows with the density difference due to 
sources other than temperature variation
Boussinesq model for the flows with density variation due to small temperature changes

6.1.1 Full gravity model

For buoyancy calculations, the gravity force is included in the source term  of the momentum conservation 
equation, as follows:

However, incorporating the gravity force directly into the source term can lead to round-off errors. Therefore, the flow 
solver computes the gravity force based on the following equation: 

where    is a reference density.

The momentum conservation equation in presence of buoyancy is re-written as:

where:

In these equations:

 is the pressure field with respect to the hydrostatic variation.
 is called the offset pressure. It is the pressure when . 
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The flow solver adds the hydrostatic contribution at the openings where a relative pressure is specified and does not 
add it at the openings where an absolute pressure is specified. For example, you would not want to add the hydrostatic 
contribution at the opening at the bottom of a tank draining under gravity, but you would want to add it at the opening
at the outlet of a channel through which fluid flows horizontally.

6.1.2 Boussinesq Model

The flow solver uses the Boussinesq model for the flows with the density variation due to small temperature changes. 
The buoyancy force per unit volume term   is modeled for incompressible liquid as follows:

where:

 is the coefficient of thermal expansion.
 is a reference temperature, at the same condition as . 

Thus, momentum conservation equation in presence of buoyancy is:

The reference temperature, , differs depending on the boundary conditions applied to the fluid domain.

6.1.3 Cavities

Enclosed cavities

In an enclosed cavity, with no communication of pressure level to the outside,   is arbitrary: the temperature and 
velocity fields are independent of reference temperature. The pressure reacts with differing linear variations 
superimposed on an unchanging field. In effect, different   values only create different hydrostatic pressure variations 
in .   is selected such that the total buoyancy force summed over the whole domain is zero.

Note

It is assumed that the pressure-density effects are negligible.
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The buoyancy source term is

This code reference temperature is computed internally to minimize the summed effect of the buoyancy term:

Reference temperature equation for enclosed cavities

where   is the volume of fluid, and the sums are over the whole domain. Substituting this expression for   into 
equation for the buoyancy source term and then summing the result over the whole domain gives a zero buoyancy 
force.

Cavities with openings

Consider a simple cavity, open to a large domain at the top and the bottom, and heated from its internal walls. 
Physically, natural convection results with fluid entering through the bottom and heated fluid leaving through the top.

 If   is computed from the reference temperature equation for enclosed cavities in a model with cavities open to 
external fluid domains then, by design, there will be a zero total buoyancy force and with the zero force from the 

 pressure boundary conditions there will be no net movement of the fluid through the cavity. Because of this 
potential problem, the reference temperature for open cavities  is it taken as the maximum of all the openings 
temperatures in the enclosure, is given by:

6.2 Flow resistance through porous materials
The pore structure resists the flow of the fluid passing through the porous material.

An isotropic porous material has the same loss coefficient in all directions.
An orthotropic porous material has three different loss coefficients that correspond to the three orthogonal 
principal axes.

The resistance to flow is included in the source term  of the momentum conservation equation as described by the 
Darcy-Forchheimer law [26].
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6.2.1 Isotropic resistance

For an isotropic porous material, the source term accounts for the resistance to flow as follows:

where

 is the permeability of the porous material that you specify.
 is the inertial loss coefficient of the porous material that you specify, and represents the fraction of the 

dynamic head lost per unit distance and has a dimension of inverse length.
 is the magnitude of the velocity. The velocity is expressed in unit vectors of the global coordinates as 

. 

6.2.2 Orthotropic resistance

An orthotropic material has three orthogonal principal axes . Each axis has a different loss coefficient.

The components of the resultant resistance force per unit volume along the principal axes   are defined as 
follows:

where

,  and   are the specified inertial loss coefficients of the porous material in the directions of , 
, and  respectively.
,  and   are the specified permeabilities of the porous material in the directions of  ,  , and 

 respectively.
,  and   are the velocity components in the directions of  ,  , and   respectively.

The equation above is written in matrix form as follows:
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The resistance force in the global Cartesian coordinates is:

where   is the transformation matrix between the coordinates along the principal axes and the global Cartesian 
system. The components of the velocity along the principal axes are expressed in the global Cartesian velocity 
components as follows:

where superscript T represents the transpose of the matrix.

Combining equations, the source term for the momentum conservation equation in the global Cartesian coordinate 
system is written as:

 The resistance force is nonlinear and is re-computed at each iteration.

6.3 Heat sources
The flow solver supports transient analysis with a constant or time-dependent heat source inside the fluid domain. The 
source term,   in low speed equation and high speed equation, corresponds to the heat generation per unit volume. 
The heat source is imposed on selected fluid elements.
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7 Turbulence models
In the flow solver, the flow field can be solved as laminar or as turbulent using governing equations. The following 
turbulence models are available to model the Reynolds (or turbulent) stresses and fluxes:

Mixing length turbulence model
Standard two-equation
RNG k-epsilon model
Realizable k-epsilon model
k-omega model
Shear stress transport model (SST)
Spalart-Allmaras turbulence model

7.1 Laminar flow
For laminar flows, the Reynolds stresses, , and the Reynolds fluxes,   ,   and  are equal to 
zero.

7.2 Turbulent flow 
 All turbulent models use Boussinesq eddy viscosity assumption [4] to evaluate the Reynolds stresses and fluxes as 
follows:

In these equations:

 is the turbulent viscosity.
 is the turbulence kinetic energy.

 is a Kronecker delta function.
  is the turbulent Prandtl number.
  is the turbulent Schmidt number.
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 is the pressure field with respect to the hydrostatic variation. This term is included in the 
pressure term of the momentum equation and is not calculated explicitly.

 is the turbulent or Reynolds flux for cases that involve mixture species transport, where the transported 
quantities are constituent mass fractions   contributing to the mixture density .

7.3 Assumptions
The derivation of the near-wall relations for turbulent flows depends on several assumptions presented in this section. 
It is assumed that the flow close to the wall is in the  direction.

7.3.1 Fully developed flow

This means that all streamwise derivatives vanish, i.e.  , and that the flow is parallel to the wall.

7.3.2 Constant shear layer flow

 This is equivalent to requiring that there is no pressure gradient or other momentum source term.

7.3.3 Boussinesq or eddy viscosity assumption

This states that the Reynolds stress can be expressed as the product of an effective eddy viscosity and the mean flow 
strain rate. Combining the Boussinesq approximation to equation above gives:

7.4 Mixing length turbulence model
Prandtl mixing length hypothesis states that the eddy viscosity could be expressed as the product of a turbulence 
length,  , and a velocity scale,  , i.e.

The mixing length turbulence model is a zero-equation model, which uses the following relationship based on Prandtl 
mixing length hypothesis to calculate the turbulent viscosity:
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 is the mixing length.
 is the modulus of the mean strain rate.

The mixing length   and damping factor  are defined as:

In these equations:

 is the Von Karman constant ( ).
 is the normal distance from the node to the wall.

 is the dimensionless wall distance.
 is a characteristic length scale for the model.

 is the shear velocity.
 is the wall shear stress.

If you do not specify the length scale, the flow solver uses a default value defined as:

 is the volume of the fluid domain.
   is the wetted area. 

The flow solver computes a length scale for each fluid domain in the model.

For internal nodes (i.e. nodes which are not touching a wall), the modulus of the mean strain rate is given by:

Note

 For a square or cylindrical duct, the above length scale  is equivalent to half the hydraulic diameter.
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7.5 Standard k-epsilon model
The standard k-epsilon model uses the turbulent viscosity evaluated from:

 is the turbulent kinetic energy.
 is the dissipation rate of the turbulent kinetic energy.

 is a k-  turbulence model constant.
 is the density of the fluid.

The turbulent kinetic energy, , and the dissipation rate of turbulent kinetic energy, , are obtained by solving a 
conservation equation for each of these two quantities given by:

In these equations:

 is the effective diffusion coefficient of :

 is the effective diffusion coefficient of  :

   is the production rate of the turbulent kinetic energy defined as:
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 is the production rate of the turbulent kinetic energy due to buoyancy defined as:

where

 ia the coefficient of thermal expansion.
 is a component of the gravity vector g in   direction.

 is a turbulent Prandtl number. You can modify it using the  TURBULENT PRANDTL NUMBER
advanced parameter.

You can disable the production term,  , using the BUOYANCY TKE PRODUCTION TERM  advanced 
parameter.

By default,   means there is no turbulence dissipation due to buoyancy. You can specify the value for 
the    coefficient using the  BUOYANCY EPS DISSIPATION TERM OPTIONS  with  BUOYANCY C3EPS 

COEFFICIENT  advanced parameters .
The constants in these equations are:

7.6 RNG k-epsilon model
The RNG k-epsilon model is derived from the application of the Re-Normalization Group (RNG) method to the Navier-
Stokes equations, [51]. The RNG k-epsilon model uses the same equation for computing the turbulent viscosity as the 
standard k-epsilon model.  Compared to the standard k-epsilon model, the RNG k-epsilon model has an additional term 
in the turbulence dissipation rate equation that accounts for the different scales of motion of turbulent flows:
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where:

 is a modified constant defined as follows:

where

 is a strain rate magnitude.
 is the production rate of the turbulent kinetic energy due to buoyancy defined as:

where
 is the coefficient of thermal expansion.
 is the component of the gravity vector g in   direction.

 is the turbulent Prandtl number. You can modify it using the  TURBULENT PRANDTL 

NUMBER  advanced parameter.

You can disable the production term,  , using the  BUOYANCY TKE PRODUCTION TERM  advanced 
parameter.

By default,   means there is no turbulence dissipation due to buoyancy. You can specify the value for 
the   coefficient using the  BUOYANCY EPS DISSIPATION TERM OPTIONS with  BUOYANCY 

C3EPS COEFFICIENT  advanced parameters.

The constants in these equations are:

7.7 Realizable k-epsilon model
The realizable k-epsilon model uses a new model for the turbulence dissipation rate equation as well as a new 
realizable eddy viscosity formulation, [52], which oppose to "non-realizable" turbulent flow where the Reynolds 
stresses can be negative. In this model, the  quantity which was involved in the standard k-epsilon model eddy 
viscosity formulation is no longer a constant but a variable.

The realizable k-epsilon model uses the following formulation for calculation of the turbulent viscosity:
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where:

 is evaluated from the following equation:

The quantity   is defined as follows:

where:

The strain rate   and vorticity   are defined as follows:

The turbulent kinetic energy,  , and the dissipation rate of turbulent kinetic energy,  , are computed by solving the 
following modified conservation equations:

where:

 is a modified constant:
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where:
 is a strain rate magnitude.

 is the production rate of the turbulent kinetic energy due to buoyancy defined as:

where:
 ia the coefficient of thermal expansion.
 is a component of the gravity vector g in   direction.

 is a turbulent Prandtl number. You can modify it using the  TURBULENT PRANDTL 

NUMBER  advanced parameter.

You can disable the production term,  , using the  BUOYANCY TKE PRODUCTION TERM  advanced 
parameter.

By default,   means there is no turbulence dissipation due to buoyancy. You can specify the value for 
the   coefficient using the  BUOYANCY EPS DISSIPATION TERM OPTIONS with  BUOYANCY 

C3EPS COEFFICIENT  advanced parameters.

The constants in these equations are:

7.8 k-omega model
With the standard k-  turbulence model, the turbulent viscosity is given by:

 is the turbulent kinetic energy.
 is the specific dissipation rate of the turbulent kinetic energy.

 is the density of the fluid.

The turbulent kinetic energy, , and the specific dissipation rate of turbulent kinetic energy, , are obtained by solving 
a conservation equation for each of these two quantities given by:
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In these equations:

 is the effective diffusion coefficient of  :

 is the effective diffusion coefficient of  is:

   is the production rate of turbulent kinetic energy:

The quantity   is defined as  where:

The quantity   is defined as   where:

The strain rate   and vorticity   are defined as follows:

The constants in these equations are:
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7.9 Shear stress transport model
With the shear stress transport (SST) turbulence model the turbulent viscosity is:

The flow solver uses the strain rate magnitude 

The strain rate   and vorticity   are defined as follows:

The turbulent kinetic energy,  , and the specific dissipation rate of turbulent kinetic energy, , are obtained by solving 
a conservation equation for each of these two quantities given by:

In these equations:

 is the blending function, given by:
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 is the second blending function, given by:

with

A production limiter is used to prevent build-up of turbulence in stagnation regions:

with

The following lists the various coefficients that are given as blended constants:

 is the effective diffusion coefficient of  :

 is the effective diffusion coefficient of  :

•
•

Note

When:
, the transport equations are equivalent to the k-ε model.
, the transport equations are equivalent to the k-ω model.
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The quantity   is defined as:

The quantity   is defined as:

The quantity   is defined as:

The quantity   is defined as:

The constants in these equations are:

7.10 Spalart-Allmaras model
The Spalart-Allmaras (SA) model adds one partial differential equation for the modified eddy viscosity, identified by  .  
The modified eddy viscosity is related to the turbulent viscosity by an algebraic equation:

The equation above is non-linear. It is solved using Newton`s method.

The modified eddy viscosity is governed by the following transport equation [50]:
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 where:

 is the molecular kinematic viscosity.
 is the distance to the nearest solid wall.

 is the modified vorticity term that maintains log-law behavior to the nearest solid wall defined as follows:

The magnitude of vorticity is computed as follows:

The non-dimensional function,  , which accelerates the decay of the destruction term in the outer region of 
the boundary layer is given by:

The constants in these equations are:

7.11 Initializing turbulence models
You can initialize the turbulence model by providing one of the following quantity pairs:  
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Turbulent intensity, Ix, and viscosity ratio, μt/μ
Turbulent intensity, Ix, and eddy length, lt
Turbulent kinetic energy, k, and dissipation rate, ε
Turbulent kinetic energy, k, and specific dissipation rate, ω

The flow solver calculates the appropriate turbulence quantities for the selected turbulence model (see table below) 
and for the provided quantity pair using the following relationships:

where:

 is the mean flow velocity at the boundary.
 is the fluid dynamic viscosity in the independent fluid domain.
 is the turbulent dynamic viscosity.

 is the fluid kinematic viscosity in the independent fluid domain.
 is the turbulent kinematic viscosity.

 is the modified viscosity.

If you initializes the fluid domain variables in such a way that   or   equal to zero everywhere, the flow solver uses 
the mixing length turbulence model to initialize the fluid domain for the first five iterations. This prevents convergence 
issues with the model. At the sixth iteration, the solver activates the specified turbulence model and uses specified 
turbulence quantities.

The following table lists the turbulence quantities that each turbulence model solves for using addition equations.

Turbulence model Turbulence quantities

Standard k-epsilon

RNG k-epsilon

Realizable k-epsilon

Turbulent kinetic energy, k

Dissipation rate, ε
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Turbulence model Turbulence quantities

k-omega

SST (shear stress transport)

Turbulent kinetic energy, k

Specific dissipation rate, ω

Spalart-Allmaras Modified viscosity, 

7.12 Turbulence model tuning coefficients
You can modify the turbulence model constants using the advanced parameters in the user.prm file. For example, to set 
the standard   coefficient to 2.0, add the following line to the user.prm file using a simple text editor, which you save 
in the run directory:

SIGMA_K_KEPS_STD = 2.0  

For more information on the user.prm file, see Flow solver files.

The following table lists the advanced parameters you use to modify the coefficients in the Standard k-epsilon model.

Advanced parameter Default Description

SIGMA_K_KEPS_STD  1.0 Sets the  coefficient.

SIGMA_EPS_KEPS_STD 1.3 Sets the  coefficient.

C_MU_KEPS_STD 0.09 Sets the  coefficient.

C_EPSILON1_KEPS_STD  1.44 Sets the  coefficient.

C_EPSILON2_KEPS_STD  1.92 Sets the  coefficient.

The following table lists the advanced parameters you use to modify the coefficients in the RNG k-epsilon model.
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Advanced parameter Default Description

ALPHA_K_KEPS_RNG 1.39 Sets the coefficient  for k equation.

ALPHA_EPS_KEPS_RNG 1.39 Sets the coefficient  for epsilon 
equation.

C_MU_KEPS_RNG 0.0845 Sets the  coefficient.

C_EPSILON1_KEPS_RNG 1.42 Sets the  coefficient.

C_EPSILON2_KEPS_RNG 1.68 Sets the  coefficient.

ETA0_KEPS_RNG 4.38 Sets the  coefficient.

BETA_KEPS_RNG 0.012 Sets the  coefficient.

The following table lists the advanced parameters you use to modify the coefficients in the Realizable k-epsilon model.

Advanced parameter Default Description

SIGMA_K_KEPS_REAL  1.0 Sets the  coefficient.

SIGMA_EPS_KEPS_REAL 1.2 Sets the  coefficient.

C2_KEPS_REAL 1.9 Sets the  coefficient.

A0_KEPS_REAL 4.0 Sets the  coefficient.

The following table lists the advanced parameters you use to modify the coefficients in the k-omega model.



Turbulence models

Flow Solver Reference Manual 43

Advanced parameter Default Description

SIGMA_K_KOMG  0.5 Sets the  coefficient.

SIGMA_OMG_KOMG 0.5 Sets the  coefficient.

ALPHA_KOMG 0.52 Sets the  coefficient.

BETA0_KOMG 0.072 Sets the  coefficient.

BETA_STAR0_KOMG 0.09 Sets the  coefficient.

The following table lists the advanced parameters you use to modify the coefficients in the Shear stress transport 
model.

Advanced parameter Default Description

SIGMA_K1_SST 1.0/0.85 Sets the  coefficient.

SIGMA_K2_SST 1.0 Sets the  coefficient.

SIGMA_OMG1_SST 2.0 Sets the  coefficient.

SIGMA_OMG2_SST 1.0/0.856 Sets the  coefficient.

A1_SST 0.31 Sets the  coefficient.

ALPHA1_SST 5.0/9.0 Sets the  coefficient.

ALPHA2_SST 0.44 Sets the  coefficient.

BETA1_SST 0.075 Sets the  coefficient.
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Advanced parameter Default Description

BETA2_SST 0.0828 Sets the  coefficient.

BETA_STAR_SST 0.09 Sets the  coefficient.

The following table lists the advanced parameters you use to modify the coefficients in the Spalart-Allmaras model.

Advanced parameter Default Description

SIGMA_SA 2.0/3.0 Sets the  coefficient.

CB1_SA 0.1355 Sets the  coefficient.

CB2_SA 0.622 Sets the  coefficient.

KAPPA_SA 0.41 Sets the  coefficient.

C_OMG2_SA 0.3 Sets the  coefficient.

C_OMG3_SA 2.0 Sets the  coefficient.

C_V1_SA 7.1 Sets the  coefficient.

7.13 Turbulent structures
The flow solver identifies turbulent structures using the Q-criteria [39]. This criteria, which is used to detect vortices in 
the computation domain, is defined with a positive invariant of the velocity gradient tensor  :

where:

 is a vorticity tensor.
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•  is a strain-rate tensor.

The norm of any tensor is defined as follows:

The vortex exists where the Q-criteria is positive. This is the regions where the vorticity magnitude prevails over the 
strain-rate magnitude. The pressure in the vortex region is required to be lower than the ambient pressure.
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8 Boundary conditions

8.1 Walls
Because the fluid is unable to penetrate a solid wall, the mass flow on the wall is equal to zero.

8.1.1 Wall treatment

The treatment of momentum and energy quantities at the wall depends on the boundary condition type. 

Slip wall

A slip wall boundary condition is used to simulate the flow next to a frictionless surface. The wall shear stress and the 
velocity gradients normal to the wall are zero. The velocity of the fluid relative to the wall is non-zero. For the k-
 turbulence model, the gradients of  and  normal to the wall and mass flow are set to zero.

Immersed boundary method

When you use the standard k-epsilon turbulence model with immersed boundary meshes, the gradient of the   and 
 values normal to the slip wall boundary are set to zero. When you use the SST turbulence model with immersed 
boundary meshes, the gradient of the   and   values normal to the slip wall boundary are set to zero. In both 
turbulence models, the specified boundary conditions are applied based on the Neumann boundary condition in 
the IBM discretization method.

No-slip wall

The velocity of the fluid at a no-slip wall is set equal to the velocity of the wall. For a stationary wall, the fluid velocity at 
the wall is zero. For translating or rotating walls, it is non-zero. The calculation of the wall shear stress, , depends on 
whether the flow is laminar or turbulent.

For a laminar flow, the viscous stress tensor,   , is given by:

 is the dynamic viscosity of the fluid. 

   is the Kronecker delta function defined as: 
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The viscous stress vector applied on the wall boundary is then obtained as:

where  is the unit vector normal to the wall boundary. 

The shear stress vector is calculated by removing the normal component from the viscous stress vector as follow:

For turbulent flow, the equations used depend on the turbulent model and whether wall functions are applied or not.

You can impose the wall velocity   on the wall boundary nodes using the  WALL MOMENTUM DIRICHLET 

BC  advanced parameter, which applies the Dirichlet boundary conditions for momentum equations on the walls. 

8.1.2 Wall distance calculation methods

Wall distance is used in turbulence models, such as Spalart-Allmaras, K-epsilon, K-omega and SST. The flow solver uses 
the following methods to compute the wall distance:

Geometric search method.
Partial differential equation (PDE) method.

The geometric search method provides more accurate results compared to the PDE method, for fluid nodes that are 
located far from the wall boundary. However, the geometric method requires more computation time.

Geometric search method

The flow solver uses the geometric search method to compute geometrically the exact distance from each fluid node to 
their closest no-slip wall boundary node. This method is useful when accurate wall distance is required in the fluid 
domain. With this method, computation time increases significantly by increasing the number of fluid nodes.

Partial differential equation method

The flow solver computes the wall distance function,  , using the Poisson equation:

Note

The mesh close to the wall must be sufficiently fine to resolve the velocity gradient at the wall. 
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The no-slip wall boundary condition for the Poisson equation is:

The other types of boundary condition for the Poisson equation are defined as:

where:

 is the normal to the boundary.
 are the Cartesian coordinates.

The wall distance,  , is computed as:

8.1.3 Wall functions

Wall functions describe the flow velocity as a function of distance from the wall within the near-wall region in the 
turbulent boundary layer. By using wall functions to approximate the mean velocity field in the near-wall region, you 
avoid mesh requirements needed to resolve the viscous sublayer.

Turbulent boundary layer 

The turbulent boundary layer that forms over a flow surface is characterized by the sharp velocity gradient along the 
direction normal to the wall as shown in the following picture.

Velocity profile near the wall
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The turbulent boundary layer is divided into the inner layer (4) and the outer layer (5).

 Velocity in the turbulent boundary layer

The inner layer in turn is divided into:

The viscous sublayer (1): 
The buffer layer (2): 
The log-law region (3): 

Boundary layer meshes, which are high aspect ratio grids with very fine spacing along the wall normal direction, are 
typically used inside boundary layers in order to capture the sharp velocity gradient while maintaining a reasonable 
overall grid count and computational efficiency. The appropriate mesh size next to walls is determined by the non-
dimension distance value y+ defined as follows:

where:
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For body-fitted fluid meshing,  is the distance between the centroid (point P) of the wall-adjacent 
control volume and the wall. You can approximate   from the distance of the first node and the wall,  ,  
as  .  In the following graphics, the centroid is represented by the point P.

For immersed boundary meshing,  is the average value of the normal wall distances between the 
boundary element's N nodes and the closest immersed wall boundary. 

 and   are density and dynamic viscosity of the fluid.

 is the wall shear stress. 

In the viscous sublayer, the mean velocity represented by the red curve, is given by the following equation represented 
by the blue curve:

where   is the dimensionless velocity computed as: 
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In the log-law region, the mean velocity is given by the log-law equation represented by the green curve:

where    is an experimental constant.

Standard wall function

The standard wall function is represented by the red curve in the graphic: Velocity in the turbulent boundary layer.

 The flow solver uses general form of exponential blending function between the linear relation in the viscous sublayer 
and the classical log-law from the log-law region as follows:

When you request the standard wall function, you should place the first computational nodes above the wall in the log-
law region. If the node is located in the viscous sublayer, the results are inaccurate. You can use wall function only for 
streamlined geometries without flow separation.

Hybrid wall function for K-Omega and SST models 

Standard wall function performance deteriorates when the first layer grid is in the buffer layer or viscous sublayer. 
Hybrid wall function ensures a locally appropriate near-wall resolution adapted to the flow structures and it is robust 
even when  . Hybrid wall function is also more robust, when the flow approaches the separation point.

The hybrid function blends the Reichardt's law  and Spaldings law  as follows [36]:

Reichardt's law of the wall is defined as follows:

The following blending is applied with classical log-law: 
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Spaldings law is given by the following inverse formula:

Hybrid wall function for Spalart-Allmaras model

The hybrid wall function blends Reichardt's law   and Spaldings law   as follows [35]:

where:

Reichardt's law of the wall is defined as follows:

The following blending is applied with classical log-law: 

where:
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Spaldings law is given by the following inverse formula:

8.1.4 Wall functions with roughness effect

 In addition to the linear relation in the viscous sublayer, the wall function can include the roughness effect as follows:

 is the specified equivalent sand grain roughness. 
 is the shear velocity. For more information, see Mixing length turbulence model.

The roughness effect shifts the log-law, but does not affect the slope.

The equation for the standard wall function with roughness effect is as follow:

Plots of wall function dimensionless velocity,   for varying dimensionless roughness is shown in the following figure. 
For reference, the smooth wall log-law and the linear function are also plotted as solid lines.
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Wall function for varying roughness heights

The equation for the hybrid wall function with roughness effect is as follow:

 is an empirical constant that depends on the dimensionless roughness height .

Reichardt's law that takes into account the roughness effect:

 blends Reichardt's law with classical log-law as follows: 

 is an empirical constant that depends on the dimensionless roughness height  .

Spaldings law is given by the following inverse formula:
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8.1.5 Wall shear stress for turbulence models

The calculation of the wall shear stress in turbulent flows depends on the applied wall treatment method. The 
application of wall functions and their types affects the shear stress calculation.

Shear stress on a resolved wall

The wall viscous stress tensor on a resolved wall in turbulent flows is defined as follows:

where:

 is the specified dynamic viscosity of the fluid. 
 is the turbulent viscosity calculated from the specified turbulence model.

 is the turbulent kinetic energy.
 is the Kronecker delta function defined as: 

The viscous stress vector applied on the wall boundary is then obtained as:

where   is the unit vector normal to the wall boundary. 

The shear stress vector is calculated by removing the normal component from the viscous stress vector as follow:

Shear stress with applied wall functions 

When wall functions are applied, the flow solver computes the magnitude of the wall shear stress   from the 
wall function formulation. It is assumed that the wall shear stress vector is aligned with the tangential component of 
the velocity at the centroid of the wall-adjacent control volume. The tangential component of the velocity is given by:
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where   is the vector of the relative velocity at the centroid of the wall-adjacent control volume. The flow solver 
computes the relative velocity with respect to the wall. 

The wall shear stress vector is then calculated as follows:

The calculation of  depends on the type of the wall function: standard wall function or hybrid wall function. 

Wall functions provide the relation between  and   at centroids of wall-adjacent control volumes. 
Since both  and  at the centroid are available from the solution of the conservation equations and the model 
geometry, respectively, the only unknown left is the wall shear velocity, . The shear velocity, which is directly 
related to the magnitude of the wall shear stress vector, , via , is used to convert  and  to 
corresponding dimensionless forms of  and .

Due to the complexity of wall function relations, an iterative method is required to solve for the wall shear stress. 

Standard wall functions

When you use the standard wall function, instead of an iterative method, the flow solver uses the turbulent kinetic 
energy,  , which is computed from the solution of turbulence conservation equations, to calculate the wall shear 
velocity as follows:

The shear velocity is used to convert the wall distance,  , to dimensionless form  .    is then computed by 
plugging   into the wall function relation and converted to   using the shear velocity. The wall shear stress is 
calculated from the following relation:

The calculation of the shear velocity from the turbulent kinetic energy makes this procedure more sensitive to 
 values and less accurate when   in comparison to the iterative procedure of hybrid wall functions. At 
separation points, the wall shear stress and   diminish. The shear velocity, according to the definition, should follow 
the shear stress and vanish. However, the turbulent kinetic energy coming from the solution of turbulence conservation 
equations maintains non-zero values at separation locations above the wall. Any non-zero turbulent kinetic energy 
leads to a finite shear velocity when standard wall function are used. The flow solver reverts back to an iterative 
procedure to calculate the wall shear stress when the employed turbulence model involves no equation for the 
turbulent kinetic energy. This is the case for the mixing length turbulence model.
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Hybrid wall functions

When hybrid wall functions are employed, the iterative method described by Knopp et al.[36] is used in the flow solver 
to calculate the magnitude of the wall shear velocity and the wall shear stress.

8.1.6 Wall boundary conditions for turbulence models

Mixing length turbulence model 

The flow solver calculates the near wall turbulent viscosity using Eddy viscosity equation with the appropriate mixing 
length   and the strain rate  . This model always uses the standard wall function to approximate the mean velocity 
field in the near-wall region of the boundary layer. 

Standard k-epsilon, RNG k-epsilon, Realizable k-epsilon turbulence models

 The flow solver calculates the near wall turbulent viscosity as

 is the turbulence length scale.
 is the damping factor. For more information, see Mixing length turbulence model.

In the log-law region, the near-wall relation is given by:

 is the fluid velocity at distance   from the wall.
 is the Von Karman constant.

 is a dimensionless wall distance for a wall bounded flow:

 is the shear velocity.

Using the previous equations, the wall shear stress,  , is given by: 

 The near wall transport equation for Standard k-epsilon model is replaced by:
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where   is a near wall damping function [17] given by:

The near wall production of turbulent kinetic energy is evaluated from:

The k-  models always uses the standard wall function to approximate the mean velocity field in the near-wall region 
of the boundary layer.

Immersed boundary method

When you use the standard k-  turbulence model with immersed boundary meshes, the following equations are used 
based on the Dirichlet boundary condition in the IBM discretization method, to compute the   and   values, 
respectively:

where:

 is the node sector average of the wall distance value, assessed at the halo node, where the flow solver 
applies the imposed boundary condition.

 is the near wall damping function.

The near wall damping function is:

where   is the damping function constant.
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The near wall production of turbulent kinetic energy is computed as:

The near wall turbulent viscosity is computed as:

where   is the damping function and computed as:

where   is the damping function constant.

K-omega turbulence model

The flow solver uses the following values for the wall resolved k-  turbulence model boundary conditions on a smooth 
wall:

The boundary conditions for the wall resolved k-  turbulence model on a rough wall are given by:

where  is the equivalent sand grain roughness height in wall units and is calculated as follow:
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Standard wall function 

For k-  turbulence model that uses the standard wall function, the flow solver calculates the boundary conditions 
similarly as to the k-  turbulence model, with exception that instead of   value, it uses   value:

where  :

For the k equation, the convective and diffusive fluxes on the wall boundary are set to zero.  

Hybrid wall function on smooth walls

The turbulent kinetic energy is zero on the wall.

The near-wall solution for   is defined as described in [36] and can be written in the wall units as follow:

where
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Hybrid wall function on rough walls

Turbulent kinetic energy is set to zero on rough walls. The boundary condition for ω is a blend of the resolved rough 
wall value  and the log layer value . Unlike the smooth resolved boundary value,  , the rough wall 
boundary value,  , is independent of  .

 Comparison between different boundary   values: blended  , rough wall implementation 
 and the log layer based value   for 

Shear Stress Transport (SST) model

On resolved smooth walls, the flow solver uses the same boundary condition as those for the k-  turbulence model.

The boundary conditions for the wall resolved SST turbulence model on a rough wall are defined as follows:
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where   and  are the turbulence kinetic energy and turbulent specific dissipation in wall units [37]:

 should satisfy the condition   .

Standard wall function 

The flow solver uses the same boundary conditions for SST model as those used for the  k-   turbulence model in 
conjunction with the standard wall functions.

Hybrid wall function on smooth walls

Turbulent kinetic energy is set to zero on rough walls. The same blended formula used for the k-  turbulence model is 
applied to calculate the boundary value of   on the wall surface.

Hybrid wall function on rough walls

Turbulent kinetic energy is non-zero and equal to the value used on a resolved rough wall [37]. The value of   is 
calculated by blending the resolved rough wall value [37] and  .

Immersed boundary method

When you use the SST turbulence model with immersed boundary meshes, the following equations are used based on 
the Dirichlet boundary condition in the IBM discretization method, to compute the   and   values, respectively:
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where:

 is the turbulence model constant.
 is the near wall damping function.

The near wall damping function is:

where   is the damping function constant.

The near wall production of turbulent kinetic energy is computed as:

The near wall turbulent viscosity is computed as:

where   is the damping function and computed as:

where   is the damping function constant.

Spalart-Allmaras model

For all types of wall treatments, the flow solver uses the following boundary condition  for modified viscosity at the wall:

Smooth walls

The flow solver calculates the near wall vorticity magnitude,  , in the same way as for the rest of the fluid domain 
using the equation that is described in Spalart-Allmaras model.
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Standard and hybrid wall functions

 The flow solver calculates the near wall vorticity magnitude,  , as follows:

where:

 is the wall shear stress. For more information, see Turbulent boundary layer.
 is the effective viscosity,   , where   is the dynamic viscosity and   is the turbulent 

viscosity.

 

8.1.7 Wall function for the thermal boundary layer

For the energy equation, a solid wall can either be specified as:

Adiabatic, which means no heat transfer allowed across the wall. In this case, a heat flux of zero is imposed at 
the wall.
Convecting, where the wall temperature, the heat flux, or the heat load is specified at the wall.

For laminar flows, the heat flux between the wall and the fluid, , is related to the wall and fluid temperatures 
through:

 is the thermal conductivity of the fluid.
 is the distance from the wall at which  is evaluated.

For turbulent flows, the temperature variation in the thermal boundary layer generally follows the general wall 
function. For more information, see the Wall functions.

A dimensionless temperature, , is defined in terms of fluid properties, wall heat flux, and the near-wall velocity scale 
:



Boundary conditions

Flow Solver Reference Manual 65

•

•
•

The following general equation describes the universal boundary layer profile for temperature:

 is the Prandtl number.

 This definition of the thermal wall functions, proposed by B.A. Kader [9], is accurate right to the wall, and applies for a 
wide range of Prandtl numbers. Notice that there is no explicit reference to roughness and it is assumed that roughness 
effects are captured implicitly by the wall when  is defined through . Roughness  and near wall  will increase 
so that  will be increased suitably. 

The equation for  is re-arranged as follows:

Given a near wall fluid temperature, , this equation can be used to compute  which is substituted directly into 
the finite volume energy equation at the wall.

For consistency with the momentum treatment, the equation for   is defined as follows:

The effect of the wall function is to amplify the laminar (i.e. molecular) thermal diffusion to the wall. The amplification 
term, , tends to 0 as  tends to 0. Because the dependent variable for the energy equation is not 
temperature but enthalpy, .  The equation for  is modified so that an approximate dependency of  on  is 
retained, while not changing the converged answer for . So, denoting the "new" solution with superscript " " and 
the "old" solution by " ", Equation for  is written as:

On convergence, the wall heat flux does not depend on enthalpy.

8.1.8 Thermal wall function for high speed flows and flows with viscous 
heating

The flow solver computes the wall heat flux as follows:
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 is the wall temperature.
 is the fluid temperature at the near wall node.

   is the heat transfer coefficient. 

For flows with significant viscous heating (such as high speed flows), the heat flux is not dependent on the difference 
between  and  but rather between  and an adiabatic wall temperature. This adiabatic wall temperature 
depends on the local flow conditions and can be derived from the thermal wall function. Denoting  as low speed 
and  as high speed, the general thermal wall function can be written as:

where

In the above equations:

 is the standard thermal wall function for low speed flows.
 is the correction to the standard thermal wall function which accounts for the contribution from the 

viscous heating on the temperature profile.
 is the laminar Prandtl number.
 is the turbulent Prandtl number.

 is the normal distance from the wall to the near wall node.
 is the shear velocity.
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 is the wall heat flux.
 is the fluid density.
 is the fluid dynamic viscosity.

 is the fluid velocity at the near wall node.
 is the fluid velocity at the intersection of the linear and logarithmic temperature profiles (for low speed 

flow).

Combining above equations gives:

which allows to express the wall heat flux as:

 The heat flux   is positive when heat flows from the solid. In these equations the terms:

 represents the standard low speed flow wall heat flux. 

   is the contribution to the wall heat flux due to viscous heating.

 Equation for  can be rewritten as:

where: 

In the literature for high speed flows,  is defined as the recovery temperature or the adiabatic wall temperature and 
is expressed as:
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where  is the recovery factor.

If  is located in the laminar sublayer (small  value), the equation for   is defined as:

which gives the standard recovery factor for the Couette flow equal to .

For the thermal wall function for high speed flow, the flow solver uses the standard formulation for the heat transfer 
coefficient given by:

The effects of viscous heating are then accounted for by correcting the fluid temperature so that   replaces   when 
the heat flux is computed.

8.1.9 Thermal wall function for natural convection

For natural convection in turbulent flows, the flow solver uses a new  correlation derived from a general temperature 
wall function for natural convection. The flow solver computes the temperature wall function [23], which is valid for 
turbulent natural convection for any Prandtl number, and for any surface inclination. A complete treatment of turbulent 
natural convection boundary layers includes the implementation of a natural convection velocity wall function. 
Implementing such a wall function however, has implications in the treatment of the production and the dissipation of 
the turbulence kinetic energy in the k-ε turbulence model.

The flow solver uses the thermal wall function, which takes into account the effect of Prandtl number as well as the 
influence of the surface angle with respect the gravity vector, in general form:

The coefficients in the thermal wall function are:

   is dependent on the   number as well as on the angle of surface with respect to the gravity vector. Raithby et al 
[24] proposed the following general formulation:
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with the following definitions for the angle :

For   

  if the surface is horizontal, facing upward
  if the surface is horizontal, facing downward

for 

  if the surface is horizontal, facing downward
  if the surface is horizontal, facing upward

The correlations of Raithby [24] for  is adopted with a small modification to make it compatible with the value of 
 for air. The  correlation is:

A new correlation for    as a function of    is derived so that the Nusselt relationship    matches as 
close as possible:

8.1.10 Local heat transfer coefficient correlation for thermal wall function

The local heat transfer coefficient in the flow solver is defined as:

 is the wall heat flux.
 is the wall temperature.
  is the local fluid temperature at a normal distance from the wall  .

The temperature scale based on wall heat flux is:
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 is the thermal diffusivity.
 is the coefficient of thermal expansion.
 is the fluid density.

 is the specific heat at constant pressure.

Combining equations, the local heat transfer coefficient is expressed as:

 For laminar flow,  ,  the local heat transfer coefficient becomes:

 The local heat transfer coefficient is computed based on the above equation and the natural convection thermal wall 
function using information on the local wall temperature and heat flux on the surface of a wall element, as well as on 
the surface orientation angle.

8.1.11 Special considerations when calculating local heat transfer coefficient

There are uncertainties regarding the validity of the correlations found in the literature when the orientation of the solid 
surface is such that  . In addition, as the angle  approaches  (heated surface facing downward or 
cooled surface facing upward), laminar flow prevails even for very high  numbers. In the flow solver, the 
methodology adopted for   is to evaluate laminar and turbulent heat fluxes and select the highest 
one. 

The heat flux for laminar flow can be written as:

The near wall fluid temperature for laminar flow   is expressed in terms of the nodal temperature   using:
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so that:

For turbulent flow, the heat flux is:

The near wall fluid temperature for turbulent flow   is expressed in terms of the nodal temperature   using:

which gives:

The turbulent heat flux corresponds to an amplification of the laminar heat flux, that is:

The amplification factor       tends to 1 when    (laminar flow). Test done with the flow solver indicate 

that the turbulent heat flux tends naturally towards the laminar heat flux for cases where   (heated surface 
facing downward or cooled surface facing upward).

8.1.12 Slip wall treatments for gases

For the flow regimes at low absolute pressure or in gas flows involving micro-channels, where the Knudsen number 
 is small, the no-slip boundary condition is no longer valid. The flow solver uses slip wall treatment for gas flows with 
Knudsen numbers ranging from 0.01 to 0.1:
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where

 is the characteristic of the flow.
 is the mean free path of the gas.

 This regime is referred to as the slip regime, [43].

Within this regime, the flow solver uses the standard momentum and energy equations to model the gas flow with the 
following modifications to the boundary treatments:

 The velocity has a non-zero finite value, called slip velocity.
 Thermal creep effects can be taken into account.
 The gas temperature at the wall can be different from the wall temperature. There can be a temperature jump at 
the wall.

Slip velocity

The flow solver uses a second order extension of Maxwell’s model [44] to approximate the slip velocity. The traditional 
no-slip boundary condition is relaxed to allow the rarefied gas to slip at the wall by imposing a tangential component of 
the slip velocity at the solid boundary. The expression of the slip velocity is defined as:

where:

 is the slip velocity.
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 is the wall velocity.
 is the local normal direction of the wall.

 and  represents respectively the first-order and second-order slip coefficients. 

To impose the Maxwell model to all walls that have slip wall specified, use the  USE LOW-PRESSURE MAXWELL 

SLIP WALL TREATMENT  advanced parameter. This advanced parameter replaces the standard slip wall treatment 
by the Maxwell model.

By default,   and  . You can specify them using the  MAXWELL SLIP WALL C 1 and  MAXWELL SLIP 

WALL C2  advanced parameters.

You have to enable the Velocity Adjusted result set to view the results for the slip velocity. You can view the results in 
the output  slipValues.dat  file located in the run directory when you specify the  OUTPUT LOW-PRESSURE 

MAXWELL SLIP WALL SUMMARY  advanced parameter.

Thermal creep effect 

 The Maxwell's model with included thermal creep effect, induced in rarefied flow with large tangential wall 
temperature gradient is given by:

where

 is the specific heat ratio defined as  , where   is the specific heat at constant pressure and   is 
the specific heat at constant volume.

 is the absolute temperature of the gas.
 is the local tangential direction of the wall.
 is the dynamic viscosity of the gas.
 is the density of the gas.

You can include the thermal creep effect only in the case of a non-isothermal fluid using the  INCLUDE THERMAL 

CREEP TERM IN MAXWELL MODEL  advanced parameter.

Temperature jump

 The flow solver uses a temperature jump condition derived by von Smoluchowski [45] to account for the effect of gas 
temperature. The temperature jump expression is defined as:



Boundary conditions

Flow Solver Reference Manual 74

•
•
•
•

•

•

•

•

•

where

 is the slip temperature of the gas.
 is the wall temperature.
 is the thermal accommodation coefficient. 

 is the Prandtl number.

 is the thermal conductivity of the gas.

To impose the Maxwell low-pressure temperature jump model, use the USE LOW-PRESSURE MAXWELL 

TEMPERATURE JUMP TREATMENT  advanced parameter. By default, the value for the thermal accommodation  

coefficient is 1. You can modify it using the  MAXWELL SLIP WALL SIGMA T  advanced parameter. Use 

the  OUTPUT LOW-PRESSURE MAXWELL SLIP WALL SUMMARY  advanced parameter to view the results in the 
output slipValues.dat file located in the run directory.

Mean free path of the gas 

 The mean free path of the gas is calculated locally at every wall-adjacent element by using the local gas density, 
pressure, and temperature.

where

 is the specified reference temperature of the gas. You specify it using the  REFERENCE TEMPERATURE 

FOR SLIP CORRECTION  advanced parameter.

 is the specified reference pressure of the gas. You specify it using the  REFERENCE PRESSURE FOR 

SLIP CORRECTION  advanced parameter.

 is the specified Sutherland constant for the viscosity of the gas. You specify it using the  SUTHERLAND 

CONSTANT FOR SLIP CORRECTION  advanced parameter.
 is the reference mean free path of the gas at temperature   and pressure  , given by the following 

equation:
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 is the reference viscosity of the ideal gas. You specify it using the  REFERENCE VISCOSITY FOR SLIP 

CORRECTION  advanced parameter.
 is the reference density of the ideal gas, which is calculated using ideal gas law.
 is the Boltzmann constant.

 is the Avogadro's number.
 (J/mol) is the universal gas constant.

 is the specific gas constant, which is obtained from the gas material properties.

8.2 Fans
In the flow solver, you can use the following fan types to model flow boundary conditions: 

Inlet Flow
Outlet Flow
Internal Fan
Recirculation Loop

8.2.1 Immersed boundary method

When you use the standard k-epsilon or SST turbulence models with immersed boundary meshes, the  ,   and 
 values that you specify at the Inlet Flow fan type boundary are applied based on the Dirichlet boundary condition in the 
IBM discretization method.

When you use the standard k-epsilon turbulence model with immersed boundary meshes, the gradient of the   and 
 values normal to the Outlet Flow fan type boundary are set to zero. When you use the SST turbulence model with 
immersed boundary meshes, the gradient of the   and   values normal to the Outlet Flow fan type boundary are set 
to zero. In both turbulence models, the specified boundary conditions are applied based on the Neumann boundary 
condition in the IBM discretization method.

8.2.2 Fan boundary condition for energy equation

Specified temperature

The fluid temperature can be specified as a boundary value on inlet flow only. The temperature imposed can either be 
the ambient temperature or specified temperature.

Temperature change from extract to return

For recirculation loop, you can specify a temperature change from the extract side of the fan to the return side of the fan 
as:
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This is equivalent to specifying the value of the return temperature

Heat generation

The heat generation condition is in fact applied as a temperature specification at the exhaust side or return side of the 
fan.

Heat generation can be specified on internal fans as well as on recirculation loops. The amount of heat generated by the 
fan can be expressed as:

 is the mass flow rate through the fan.
 is the specific heat at constant pressure of the fluid.

  for internal fans.
 for recirculation loops. 

8.2.3 Fan boundary condition for scalar equation

General scalar equation

An inlet value of the mass ratio may be specified at inlet flows.

Specified relative humidity or specific humidity

The relative humidity or the specific humidity can be specified at inlet flows even though the transport equation for 
water vapor in air is in terms of the mass ratio. The conversions from relative humidity to mass ratio and from specific 
humidity to mass ratio are described in conversion from relative humidity to mass ratio.

8.2.4 Pressure rise

In the context of a fan curve, the term pressure rise, often referred to as delta pressure, is a fundamental parameter that 
plays a pivotal role in understanding the performance characteristics of a fan system. The flow solver computes the 
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static pressure rise as the difference between the fan exhaust static pressure,  , and the fan intake static pressure,
.

This section demonstrates the flow solver's process for computing static pressure within the context of a fan with 
pressure rise, as defined by its fan curve. This page also explains the calculation methods when the fan serves as an 
inlet, outlet, internal, or recirculation fan.

Inlet fan with pressure rise

When the solver computes the pressure rise for the inlet fan, it assumes that the intake of an inlet fan is linked to the 
environment with ambient conditions, while the fan's exhaust is connected to the inlet of the computational domain.

Therefore, the pressure imposed at the exhaust of the domain is the static pressure,  . It is defined as: 

where the total inlet pressure is equal to the ambient pressure since the flow is on the incoming side of the fan, 
.

In post-processing, you visualize the relative pressures, which lacks the static pressure component. Thus, what you 
observe is not precisely the total pressure   as defined above, which is absolute. This term is now equal to zero since 

.

Outlet fan with pressure rise

When the solver computes the pressure rise for the outlet fan, it assumes that the intake of an outlet fan is linked to the 
outlet of the computational domain, while the fan's exhaust is connected to the environment with ambient conditions.

The pressure imposed at the outlet is a static pressure at the fan intake, . The ambient pressure is known and is 
equal to the static pressure since the flow is leaving the fan.

On the other hand, the static pressure at the fan intake is

where  is the dynamic pressure at the fan intake.
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Using the pressure rise equation, the total pressure at the fan intake is:

Therefore, the static pressure at the fan intake is:

In post-processing, you visualize the relative pressures, which lacks the static pressure component. Thus, what you 
observe is not precisely the static pressure   as defined above, which is absolute. This term is now equal to zero 
since  .

Internal fan with pressure rise

For an internal fan, the flow solver duplicates the face, splits the computational domain into an outlet and an inlet at 
the fan location. The intake of an internal fan is connected to the outlet of the computational domain. The fan's exhaust 
is connected to the inlet.

The pressure imposed at the inlet of the domain is the static pressure:
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Recirculation fan with pressure rise

A recirculation fan connects an outlet in a computational domain to an inlet of the fan. The intake of a recirculation fan 
is connected to the outlet. The fan's exhaust is connected to the inlet of the computational domain.

The pressure imposed at the inlet of the domain is the static pressure:
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8.2.5 Fan Curve

Using the fan curve, you can specify the relationship between the static pressure rise,  , across the outlet, and the 
volume flow rate   circulated by the fan as follows:

The fan's pressure rise   is computed depending on the fan curve type (inlet fan curve, outlet fan curve, internal fan 
curve and recirculation fan curve) using the equations in Pressure rise.

Head loss coefficient,  , appears if the fan's pressure rise reduces due to a head loss. For more information, see Head 
loss on fan.

You can use the implicit or explicit approach to define to define the fan's volume flow rate from the fan curve.

Implicit approach

In the implicit approach, the solver implicitly calculates the volume flow rate at current iteration  based on the 
pressure rise at the same iteration  and the active coefficients of the linear system. The solver obtains the linear 
system coefficients from the fan curve derivative, based on the fan's pressure rise at previous iteration . Therefore, 
both the fan's pressure rise and fan's volume flow rate are the results of the linear system solution.
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Explicit approach

In the explicit approach, the solver computes the volume flow rate at current iteration  directly from the fan 
curve itself using the fan's pressure rise at previous iteration , and imposes the volume flow rate as an explicit 
boundary condition to form the linear system. The software then obtains the pressure rise at the current iteration 

 by solving the linear system.

In the explicit approach, the pressure rise and volume flow rate must converge through explicit iterations. This could 
lead to strong fluctuations in the solution convergence based on the characteristics of the fan curve. You have to 
control these fluctuations using the relaxation techniques. The implicit approach suppresses these fluctuations by 
making the pressure rise and volume flow rate better converge at each iteration, through implicit coupling in the linear 
system.

Implicit vs explicit approach

The flow solver supports both implicit and explicit approaches to define the volume flow rate for all fan 
curve types, except for internal fan that uses always explicit approach.
By default, the flow solver uses the implicit approach. To switch to the explicit approach, you need to set the 
value of the USE EXPLICIT FAN CURVE advanced parameter to TRUE.

Head loss on fan

In the case of a head loss, the fan curve is modified that for a given volume flow rate, the pressure rise produced by the 
fan is reduced by the head loss. In the fan curve, the pressure rise is shifted below the nominal fan curve by the amount 
of  .

where:

   and   are the specified intake and exhaust loss coefficients, respectively.
   and    are the intake and exhaust densities, respectively.
   is the flow velocity.

Therefore, you can rewrite    as follows:

 and   are the intake and exhaust areas.
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To obtain the volume flow rate, , the solver also needs the value for the head loss coefficient, , that is defined as:

Volume flow rate calculation with implicit approach

Using the implicit approach, the solver defines the relationship between the fan's pressure rise and volume flow rate 
using the Taylor series expansion:

 is a volume flow rate.
 represents the fan curve.

The superscripts  and  refer to the previous and current iterations, respectively.

The pressure rise, , volume flow rate,    , and gradient,     , are evaluated from the solution at 

iteration, . The updated volume flow rate,  , is evaluated implicitly at the current iteration, . 
In the implicit approach, the solver takes the fan curve data local to elements over the two faces on opposite sides of 
the fan and obtains a normal velocity vector for each element of a face to impose the Dirichlet boundary condition. The 

solver evaluates      on the fan curve for a particular face element and obtains   from the derivative 

of the fan curve at the specified operating point. In this approach, the solver inserts the local velocity into the solution 
matrix at a particular point based on the pressure difference across a face element. This gives a relationship between 
the velocity and pressure.

Volume flow rate calculation with explicit approach

The explicit approach consists of calculating the fan's pressure rise at a given iteration, and then obtaining the 
corresponding volume flow rate from the fan curve: 

Note

If there is no head loss on the fan,   is set to zero.
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The superscripts  and  refer to the previous and current iteration levels, respectively. The pressure rise, 
and     are evaluated at iteration, . The updated volume flow rate,  , is evaluated at the current iteration, 

. This volume flow rate is then imposed as the boundary condition for the next iteration and a new value of 
pressure rise is calculated. However, when using the explicit approach, the pressure rise and the volume flow rate at a 
given iteration level are out of sync until the solution starts to reach some level of convergence, which can lead to some 
fluctuations in the solution convergence.

The solver then uses the calculated volume flow rate through the fan to obtain the normal velocity vectors on both 
faces of the fan:   and . The normal velocity vectors,   and , become Dirichlet boundary conditions 
on the opposing sides.

8.2.6 Flow direction

Flow angle on fan

The flow through an inlet fan or an internal fan can be specified to be at an angle   from the fan normal. In such cases, 
the velocity component normal to the fan,   , is the velocity obtained from the fan curve, velocity, mass flow, volume 
flow, or pressure rise specification. The velocity component parallel to the fan plane,  , is then calculated so that the 
total velocity vector is in the specified flow direction:

Swirl on fan

Swirl can also be imposed on inlet and internal fans by specifying an axis of rotation and an angle   from the fan 
normal. At each computation point on the fan, the velocity is calculated such that it has a component normal to the fan 
plane and a component tangential to that plane in the direction of rotation.
The velocity component normal to the fan plane,  , is obtained from the mass flow rate, velocity, fan curve or 
pressure rise specification, as usual, whereas the tangential component,  , is calculated from:

8.3 Openings
Openings, also called vents, are pressure and temperature specified boundaries. The boundary condition imposed 
depends on the direction of the flow: inflow or an outflow. The direction of the flow at a vent can vary during the solve.

The flow solver uses the node-based treatment, which means that the control volume around each node of a vent can 
have incoming or outgoing flow separately from its neighbors. For separated or reversed flow at an opening, you can 
activate the faceset-based treatment for openings by using the USE FACESET-BASED TREATMENT FOR 
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OPENINGS  advanced parameter. The direction of the total mass flow through the opening faceset is used to 
determine if the flow is coming in or going out of the domain for all elements of the opening. 

8.3.1 Inflow vent

Pressure

At inflow vents, you specify the total pressure, , but the solver imposes the static pressure:

where   is the velocity component normal to the vent. 

You can also specify a head loss coefficient,  , at a vent to simulate a screen or a filter at that opening. In such cases, 
the static pressure is computed as follows: 

When an inflow vent is attached to a rotating frame of reference, the static pressure is computed as follows:

where   is the absolute velocity magnitude.

Temperature

The temperature is applied only at inflows. The temperature is either the specified value or ambient temperature.

Turbulence quantities

The solver applies turbulence quantities only at inflow vents. Depending on the turbulence model and the specified 
turbulence quantities, the following equations are used to compute the turbulence kinetic energy, , the dissipation 
rate, , or the specific dissipation rate, :
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When you do not specify any turbulence quantities, the solver computes them using:

A turbulence intensity, , of 4%.
An eddy length scale, , computed as follows:

 is the mean flow velocity at the boundary condition.
 is the fluid dynamic viscosity.
 is the fluid density.

 is the maximum pressure difference of the complete fluid domain.
 is the surface area of the vent.

Immersed boundary method

When you use the standard k-epsilon or SST turbulence models with immersed boundary meshes, the  ,   and 
 values that you specify at the inflow boundary are applied based on the Dirichlet boundary condition in the IBM
discretization method.

Relative humidity or specific humidity

When you model humidity and condensation, you can specify the value of the relative humidity or of the specific 
humidity at vents. This value is applied only at inflow vents.

Mass ratio for general scalar equation

When you model additional general scalar quantities, you can specify an inlet value of the mass ratio at vents. This 
value is applied only at inflow vents.
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Angle from vent

You can specify the angle,  ,  at which the flow enters the fluid domain. It is the angle between the flow direction and 
the vent normal. The flow solver calculates the velocity component parallel to the vent, , so that the total velocity 
vector is in the specified flow direction, as follows: 

8.3.2 Outflow vent

At outflow vents, you can only specify the pressure. The solver imposes the static pressure that you specify locally or the 
specified ambient pressure.

Immersed boundary method

When you use the standard k-epsilon turbulence model with immersed boundary meshes, the gradient of the   and 
 values normal to the outflow boundary are set to zero. When you use the SST turbulence model with immersed 
boundary meshes, the gradient of the   and   values normal to the outflow boundary are set to zero. In both 
turbulence models, the specified boundary conditions are applied based on the Neumann boundary condition in 
the IBM discretization method.

8.4 Convective outflow
The convective outflow boundary condition models flow exiting the fluid domain without specifying the pressure. It lets 
the flow field exit and enter the flow domain on each element of the boundary as necessary conserving the mass.

At the centroids of each face element lying on the convective outflow boundary, the dependent variable fields, , are 
computed from a discretized form of the advection equation:

For the purposes of the above boundary condition equation, the advecting velocity field is taken as uniform, in the 
direction normal to the boundary. The solver computes the magnitude of the velocity, , from the average velocity of 
all other flow boundaries to conserve mass of the flow domain.
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To compute the diffusive and advective fluxes, the solver derives an expression for the values of the dependent 
variables at the boundary face elements as a function of the values at the nodes of the adjacent solid element, and 
imposes them implicitly.

For the mass equation on the convective outflow boundary, the flow solver computes the outflow velocity field 
explicitly based upon the current nodal field. It is then scaled to conserve mass, accounting for density variation with 
time.

8.4.1 Transient initialization

Because the temporal derivative is often dominant in the boundary value equation, a reasonable initial condition is 
crucial. Therefore, a small number of initializing steps are performed in which the outflow boundary is treated as an 
opening, to obtain a reasonable and conservative starting point for the solution of the evolution of the boundary field.

8.4.2 Steady state assumption

For better stability, in steady state runs, the flow solver computes the advected values from a zero-normal-derivative 
condition, with temporal derivative explicitly neglected. This assumption is true in the converged steady state solution. 
It removes the need for the initializing iterations and improves convergence and robustness. Because the conservation 
of mass is explicitly enforced over the entire domain, the pressure field at the outflow boundary can evolve naturally, so 
that the upstream flow features are not strongly influenced by nearness of the boundary.

8.5 Bursting membrane and flap
The bursting membrane boundary condition models a flow surface that bursts when a specified static pressure 
difference across the membrane or a specified time is reached.  After the burst, the fluid flows freely from one side to 
the other in the fluid domain. 

The flap boundary condition models the opening and the closing of the flap. A closed flap is represented by a flow 
surface; while, an open flap is represented by an opening where the fluid flows freely from one side to the other in 
the fluid domain. 

The specified criteria for flap opening include:

Specified static pressure difference across the flap
Specified time

The specified criteria for flap closing include:

Falling below a specified dynamic pressure difference across the flap
Specified time
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The flow solver uses the following assumptions:

When the membrane bursts, the opening that replaces it remains even if the pressure is decreased to lower 
values.
A displacement or motion of the membrane or flap surface is not modeled, and effects of the motion of the 
membrane or flap on the flow are neglected.
When the bursting membrane or flap is embedded in the fluid domain, the fluid mesh is continuous across the 
interface.
When the bursting membrane or flap is on the fluid domain boundary, it is assumed that the fluid follows the 
ideal gas law.
When the bursting membrane or flap is on the fluid domain boundary, only one bursting membrane or one flap 
can be defined.

8.5.1 Embedded bursting membrane or flap

Switching between closed and open modes leads to a sudden change from an impermeable surface to a fully 
permeable interface in a flow direction. This cause a numerical pressure wave propagation destabilizing the 
convergence of the solver.

To alleviate this issue, the flow solver uses a screen relaxation method, where switching between the embedded flow 
surface and the zero head loss screen is carried out by imposing variable head loss for the screen through many 
iterations:

In a steady state model, the relaxation is performed through steady state iterations. 
In a transient model, the relaxation is performed in one time step and through many non-linear iterations.

Once switching the condition is initiated, the flow solver calculates automatically the variable screen head loss 
coefficient with the dynamic pressure-based screen formulation, according to:

where

 is the head loss coefficient.
 is the area averaged density.
 is the average velocity in the upsteam fluid domain

At each iteration, the head loss coefficient decreases towards zero.

For a flap, the switching process from the open state to the closed state starts with increasing the head loss coefficient, 
, at each iteration from zero to its most up-to-date value at previous closed state.  The number of iterations to 

complete the switching process depends on the maximum number of iterations in the simulation and the simulation 
type: transient or steady state.
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8.5.2 Boundary bursting membrane or flap

After the membrane bursts or the flap opens, the flow solver defines a closed fluid region to insure that the pressure 
value in the fluid domain accurately follow the Gay-Lussac’s Law of pressure-temperature with constant, [49]. The 
closed region consists of a group of 3D elements that are enclosed by boundary of the fluid domain and one bursting 
membrane or flap.

The flow solver must re-level the pressure value in the closed fluid region. When the flow solver detects a closed region, 
it computes the initial mass   using the initial density  :

The conservation of mass must be globally satisfied in the closed region through the ideal gas law:

where:

 is the index of the control volume around a mesh node.
 is the set of all control volumes within the closed region,
 is the density of the control volume.

 is the volume of the control volume.
 is the absolute temperature of the control volume.

 (J/mol) is the universal gas constant.

 is the absolute pressure of the control volume,  defined as follows:

 is the pressure of the control volume after the linear system solve.

The pressure offset within the closed region is defined as follows:

where

and
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The pressure re-leveling procedure is complete by the following relation:

The pressure relative to the global offset pressure,  , is used in all calculations. This procedure accounts for an 
accurate increase in the static pressure difference across the boundary membrane or flap.

8.6 High speed flow boundary condition
You can use a high speed flow boundary condition for inlets or outlets, to specify the Mach number, pressure, and 
turbulence values at the domain boundary when the flow has velocities above Mach 0.3, which implies that the flow has 
density changes of more than 5% and is generally treated as compressible.

The Mach number is defined as:

 is the local speed.
 is the speed of sound.

The speed of sound  is the speed at which sound propagates through a medium under specific conditions. In ideal
gases,  is dependent on the molecular weight, and it is a function of temperature:

 is the adiabatic exponent.
 is the gas constant.
 is the absolute temperature.

In real gases, in which the density and specific heat capacity are functions of temperature and pressure, the specific 
heat at constant volume, , is defined as:

where:
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 is the temperature dependent, or bivariate pressure and temperature dependent specific heat.
 is the pressure dependent, or bivariate pressure and temperature dependent density.
 is the pressure.

For real gases, the speed of sound is computed by:

The specified Mach number is converted in a velocity using the speed of sound in the fluid. This velocity is then applied 
to the faces you select as a supersonic or subsonic inlet or outlet. The flow solver selectively applies the boundary 
values you specified depending on the local flow condition.

The flow solver uses the general energy equation for all flows. For more information, see energy equation.

For low speed flows (Mach < 0.3) the energy equation is simplified. The pressure work and dissipation terms are 
neglected. In this case, the flow solver uses the low speed equation.

8.7 Screens
The flow solver models planar resistances such as screens by calculating the pressure drop, , across them:

 is the velocity component normal to the screen.
 is the head loss coefficient.

The direction of the velocity components on either side of the screen are identical, unless a flow angle is specified at the 
screen. This flow angle and the pressure drop are accounted for in the mass and momentum equations.

You must specify one of the following:

The total head loss coefficient  .
The coefficient , which is the linear proportionality constant, that relates the pressure drop to the normal 
velocity component: . In this case,   has units of mass flux.
A correlation to calculate the head loss coefficient.

When you choose to compute the head loss coefficient,  , the following correlations are available:

Thin perforated plate screen correlation
Wire screens correlation
Silk thread screens correlation
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8.7.1 Thin perforated plate screen correlation

For this geometry the following correlation applies:

Thin perforated plate screen correlation

 The term,  , depends on the geometry of the perforations from the screen. To obtain,  , you can select between the 
following edge geometries: sharp edge, rounded edge, beveled edge.

The following definitions are used to define the thin perforated plate: 

  is the length of the screen.
 is the width of the screen.

   is the diameter of a single orifice.
 is the perimeter of a single orifice.
 is the area of a single orifice.

 is the area of the free stream.
 is the free area ratio.

 is the thickness of the plate.
 is hydraulic diameter of a single orifice.

 is the viscosity of the fluid.
 is the orifice Reynolds number.
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Sharp Edge

Sharp edge orifice

 The term,  , for sharp edge orifice is:

The following assumptions apply:

 where 

Rounded Edge

Rounded edge orifice

 The term,  , for rounded edge orifice is:

The following assumptions apply:

Grid thickness is the same as orifice radius.
.
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Beveled Edge

Beveled edge orifice 40 - 60 degrees

 The term,  , for beveled edge orifice is:

The following assumptions apply:

The beveled edge of the orifice is facing the flow.
The bevel angle is between 40° and 90°.

 

8.7.2 Wire screens correlation

For wire screens the following correlation applies:

 is the area of a single orifice.
 is the area of the free stream.

 is the free area ratio.

The following assumption applies:
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8.7.3 Silk thread screens correlation

For silk thread screens the following correlation applies:

 is the area of a single orifice.
 is the area of the free stream.

 is the free area ratio.

The following assumption applies:

8.8 Symmetry boundaries
A model is symmetric about a plane when the flow on one side of the plane is a mirror image of the flow on the opposite 
side of the plane. In such case, the use of a symmetry plane condition enables efficient use of computer resources by 
allowing the numerical solution to be obtained on a fraction of the original domain.

The application of a symmetry plane condition to a planar surface of the grid means that the solution on the complete 
geometry is a reflection of itself about the symmetry plane.

For the mass equation and all scalar equations (energy, water vapor, passive component,  omega, and ), a zero flow 
condition is imposed at the symmetry plane.

For the momentum equations, the symmetry condition is specified such that all vector values are parallel to the plane 
of symmetry.

8.8.1 Immersed boundary method

When you use the standard k-epsilon turbulence model with immersed boundary meshes, the gradient of the   and 
 values normal to the symmetry boundary are set to zero. When you use the SST turbulence model with immersed 
boundary meshes, the gradient of the   and   values normal to the symmetry boundary are set to zero. In both 
turbulence models, the specified boundary conditions are applied based on the Neumann boundary condition in 
the IBM discretization method.

8.9 Periodic boundaries
Periodic boundary conditions are used to simulate a flow leaving through a boundary A and entering through a 
boundary B under identical conditions (velocity, temperature, scalar values, etc).
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The periodic boundary conditions act as if the solution domain is rolled up so that boundaries A and B become 
adjacent. Any pair of periodic boundaries must have similar shape and size. They can be either parallel to one another, 
or one boundary is the copy of the other periodic boundary, rotated by an angle  with respect to a specified axis of 
rotation.

8.9.1 Periodicity with a pressure drop

The flow solver applies the boundary conditions for translational periodicity as follows:

The flow solver computes pressure drop for incompressible or isentropic relations, for compressible cases, using 
Bernoulli’s equation:

where:

 and   are the heights with respect to the gravity vector.
 is a head loss on the fan.

From this equation, the pressure drop is:

where:

 is the proportionality coefficient.
 is the calculated mass flow rate.
 is the cross-sectional area of the region where the periodic boundary condition is specified.

Periodicity with a specified mass flow rate

You can also specify a mass flow rate when you set the translational periodic boundary condition, using the advanced 
parameters.

When you specify the mass flow rate, the flow solver compares the specified mass flow rate   with the calculated 
mass flow rate   and adjusts the pressure drop, based on the relation proposed by Bernoulli’s equation. The 
difference between   and   lies within the specified relative tolerance.

You apply the mass flow rate  at translational periodic boundary conditions with a pressure drop using 
the user.prm file with the following advanced parameters. 
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Advanced Paramter Value Description

GLOBAL_MASS_FLOW_RATE_AT_PERIODIC

_FACES_TARGET

double value Sets a mass flow rate applied to all periodic 
boundaries. The mass flow rate is applied to the 
primary periodic region. The mass flow rate 
units must be consistent with the solution units.

GLOBAL_MASS_FLOW_RATE_AT_PERIODIC

_FACES_RELAX 

double value Sets the value to relax the approximate 
pressure drop computed from the mass flow 
rate and helps to convergence. The default 
value is 0.5 and it should not be reduced unless 
the solver experience big oscillation in the 
solution. 

GLOBAL_MASS_FLOW_RATE_AT_PERIODIC

_FACES_RELATIVE_TOL

double value Sets the relative tolerance that controls how 
precise the computed mass flow rate is 
compared to the specified mass flow rate. By 
default, the relative tolerance is 1e-4, which is 
equivalent to 0.01%.

For more information on the user.prm file, see Flow solver files. 

8.10 Mixing plane
A mixing plane boundary condition interfaces two or more fluid volumes with different flow conditions. 
The two interfacing faces:

Can have different geometries.
Can have a connected interface or be geometrically separated.
Do not need to be parallel.

The algorithm solves each fluid volume independently. It uses flow variable values from the adjacent fluid volume as 
boundary conditions. 
You can use a mixing plane on two or more interfacing faces with different geometries. The interfacing faces are 
subdivided in a number of areas you specify. The areas are matched to its closest corresponding area according to their 
geometry and the averaging method you choose.

Averaging method examples
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Along radius
Along vector 

 Upstream

 Downstream

 Averaging direction

 Number of segments (for example: 5)

For each area, the averaged flow variables are transformed to a 1D field using an averaging technique and the 
information is applied to the other side as a boundary condition.

Depending on the flow direction, for the momentum equation along each area, the downstream static pressure is 
applied to the upstream side, whereas the total pressure of the upstream side is applied to the downstream side in an 
explicit order.

The values are mapped between areas to account for different geometry and mesh size at the interfaces.
You define either a radial or axial averaging method.

When the defined axis is perpendicular to the mixing plane, the flow variable values are averaged along radial 
arcs at the interfaces.
When the defined axis is parallel to the mixing plane, the flow variable values are averaged perpendicular to 
axial segments at the interfaces.

8.11 Rotating frames of reference
The flow solver uses the frozen rotor method for rotating frames of reference (RFR). This method is useful for models 
where the flow distribution around the interface between the fixed and the rotating frames is non-uniform. The flow 
solver uses the following Navier-Stokes and Energy equations that use the absolute velocity formulation:
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Mass equation

Momentum equations

Total energy conservation equation

where:
 is the absolute (inertial) velocity.
 is the relative velocity in the rotating frame.
 is the rotating frame velocity relative to the inertial reference frame.

 is the angular frame velocity.
 is the position vector from the origin of the rotating frame.

 is the total enthalpy.

The interface between the frames allows the flow solver to model the frame change with a zero head loss and the flow
recirculation across the interface.

The following figure is a schematic representation of the RFR interface with coupled nodes and the control volumes. 
These nodes are physically at the same location but not in the same frame of reference.
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The attached node to rotating frame 1 with rotational velocity  .

The attached node to rotating frame 2 with rotational velocity .

At the RFR interface, the flow variables, such as absolute velocities and static pressure, and the total enthalpy are equal 
between node 1 and node 2:

8.12 1D network connected to 3D fluid region
In a coupled thermal-flow analysis, you can couple a 3D fluid domain to a set of thermal streams and ducts with mass 
flow from a 1D fluid network that has the same fluid material. The flow solver solves the equations on the 3D fluid 
domain using the information from the 1D fluid network solved by the thermal solver.

8.12.1 Flow Directions

Fluid flows from 1D network to 3D domain Fluid flows from 3D domain to 1D network

When the fluid flows from the 3D domain to the 1D network, you can specify the flow alignment, turbulence 
characteristics, and define a radially varying swirl in the fluid if your model requires it.
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8.12.2 Transfer options between solvers

Irrespective of the flow direction, the thermal solver always transfers the fluid quantities from the 1D fluid network to 
the 3D fluid domain at the junction. You specify whether the mass flow ( ) or pressure (P) is transferred. The flow 
solver computes the other quantity. 

The thermal and the flow solvers exchange the temperature at the junction as the boundary temperature of the other 
solver.

If the flow direction is from the 3D domain to the 1D network and you request that the thermal solver automatically 
determines the inlet temperature of the stream, the flow solver transfers the temperature from the 3D flow surface to 
the inlet of the stream.

8.12.3 Transferring mass flow rate to the 3D fluid domain

Fluid flows from 1D network to 3D domain Fluid flows from 3D domain to 1D network

The flow solver treats the selected 2D surface as an 
inlet flow with mass flow rate value transferred from 
the junction by the thermal solver, which is the outlet 
value of the thermal stream or duct.

The flow solver treats the selected 2D surface as an 
outlet flow with mass flow rate value transferred 
from the junction by the thermal solver, which is the 
inlet value of the thermal stream or duct.

Multiple 1D fluid connections

When transferring mass flow rate, you can connect multiple streams and ducts to the 3D fluid domain at the junction. At 
each junction, the flow solver controls the mass flow using the conservation of mass equation: 

Where:
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 is the mass flow rate of a 1D duct or stream
 is the mass flow rate transferred to the 3D fluid domain.

Because the mass flow value of each stream or duct can be positive or negative, the solvers adapt automatically to the 
direction of the 1D fluid.

8.12.4 Transferring pressure to the 3D fluid domain

When you specify the pressure transfer, the flow solver always treats the selected 2D surface of the 3D fluid domain as 
an opening.

Fluid flows from 1D network to 3D domain Fluid flows from 3D domain to 1D network

The 1D fluid pressure from the outlet of the stream or 
duct is specified as the opening total pressure. For 
more information, see Inflow vent. 

The 1D fluid pressure from the inlet of the stream or 
duct is specified as the opening static pressure. For 
more information, see Outflow vent.

The thermal solver allows only one stream or duct to be connected to the 3D fluid domain when a pressure transfer is 
specified.

You can manually override the pressure value transferred by the thermal solver using an expression, a formula, a table, 
or a table of fields. For example, this may be useful if you would like to keep a constant pressure value at some 
locations.
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9 Modeling a gas mixtures
The flow solver uses the scalar equation to model a gas mixed in any proportion with the main gas. The software 
supports up to five gases in the mixture. All gases are assumed to behave as ideal gases using the ideal gas law. For 
more information, see Ideal gas law.

The flow solver uses the conservation equations of mass, momentum, and energy to compute the gas mixture. 

When modeling a gas mixture, the following properties are calculated at every iteration:

 the gas mixture density  
 the specific heat at constant pressure of the gas mixture

 the thermal conductivity of the gas mixture
 the dynamic viscosity of the gas mixture

This property update is based on the assumption that the two gases behave as ideal gases. Ideal gas equations of state 
for two gases, defined as follows: 

,   represent the partial pressures of gas 1 and gas 2.
,   are the gas constants of gas 1 and gas 2.

9.1 Pressure and density of the gas mixture
The pressure of the gas mixture is given by:

The density of the gas mixture is given by:

9.2 Specific heat at constant pressure of the gas mixture
The specific heat of the mixture, , is calculated from the following equations [18]:

 is the molar specific heat of the mixture, defined as:
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 is the molar mass of the mixture, defined as:

In these equations,   and   are the molar masses of gas 1 and gas 2.

9.3 Thermal conductivity and dynamic viscosity of the gas mixture
The thermal conductivity,  , and the dynamic viscosity, , of the mixture are calculated using the method of Wilke 
[19], which is valid for gases at low pressures. 

The property , that represents the the gas mixture thermal conductivity or the gas mixture dynamic viscosity, is 
given by:

where    and  are given by:

In these equations:

   , , and    represent the property, thermal conductivity or viscosity, of the gas mixture, gas 1, and gas 2, 
respectively.
   and   are the mole fractions of the two gases given by:
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9.4 Species enthalpy diffusion in the homogeneous gas mixture
You can include the enthalpy flux to the low-speed energy equation for the homogeneous gas mixture using the 
INCLUDE SPECIES ENTHALPY DIFFUSION TERM  advanced parameter. It accounts for the energy changes in 

the gas mixtures due to species diffusion [38]. You should include the enthalpy diffusion term when species mass 
fraction gradients are significant as in combustion problems or for the gas mixture with different temperatures at low 
speed.

The term in the energy equation related to the transport of enthalpy due to the species diffusion is defined as follows:

where:

   is the sensible enthalpy for the species  .
 is the diffusive mass flux.

For laminar flow, the value of the diffusive mass flux   is defined as follows:

where:

 is the gas mixture density.
 is the molecular diffusion coefficient for species .
 is the mass fraction of species   in the mixture.

For turbulent flow, the value of the diffusive mass flux   is defined as follows:

where:

 is the turbulent viscosity.
 is the turbulent Schmidt number.

The flow solver uses the binary molecular diffusion coefficient   as a value for  for each solved species 
 relatively to the primary gas ( ). For the primary gas, the flow solver uses the following expression:
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where   is the molar fraction defined as:

where:
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10 Modeling humidity
The flow solver uses the gas mixture scalar equation to model humidity that is defined as a mixture of water vapor in air. 
For more information, see Modeling a gas mixtures.

Rather than specifying the boundary and initial conditions in terms of mass ratio, in this case, they are specified either 
in terms of relative humidity or specific humidity. The flow solver supports the specification of relative humidity and 
specific humidity as function of time.

The preprocessor converts the humidity values to mass ratio values. After the solution of the conservation equations is 
obtained, the postprocessor coverts the mass ratio values back to relative and specific humidity values.

 You do not need to specify the water vapor properties, as they are available in the flow solver.

10.1 Conversion from relative humidity to mass ratio
The flow solver sets to zero the gradient normal to the wall of the mass ratio, when it solves the humidity equation or 
the other general scalar equation. 

By definition, the relative humidity,  , is the ratio of the partial pressure of the water vapor, , to the saturation 
pressure of the water vapor at a given temperature :

A value of  equals to 100% indicates the onset of condensation. The air/vapor mixture gets closer to the 
condensation state if:

Water vapor is added to the fluid, the partial pressure of water vapor then increases.
The temperature goes down.

The flow solver uses analytical formulas, proposed in [13], to calculate the water vapor saturation pressure for 
 given by:

with the following coefficients:
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The water vapor saturation pressure for  given by:

with the following coefficients:

In these equations, the temperature  is in Kelvin and  is in Pascal.

The mass ratio is then obtained as:

 is the pressure of the water vapor/air mixture.
 is the water vapor gas constant.
 is the air's gas constant.

10.2 Conversion from specific humidity to mass ratio
By definition, the specific humidity  is the ratio of the water vapor density to the dry air density, defined as:

The conversion from specific humidity to mass ratio is given by:
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10.3 Condensation and evaporation
In transient analysis, the flow solver computes condensation and evaporation at walls when the ambient fluid is air.

The model assumes film type condensation or evaporation with the following conditions:

The water film on the surface of the walls is very thin.
The temperature of the liquid film is assumed to be the same as that of the wall.
The rate of mass transfer between condensate and the air is small.
The presence of the condensate does not affect the heat transfer coefficient of the surface.

10.3.1 Mass and scalar conservation equations

The flow solver calculates the flux of water vapor from the film to the air as follows [13]:

If the water vapor density is greater than the density at saturation (i.e. 100% relative humidity), then the flow solver 
evaluates the water vapor flux from:

The mass transfer coefficient, , is evaluated from the Lewis relation:

 is the saturation density of water vapor at the wall temperature.
          is the density of the water vapor in the fluid.

             represents the heat transfer coefficient computed by the thermal solver.
         is the specific heat per unit volume of the air-vapor fluid mixture.
         is the density of air in the fluid.

           is the ratio of the thermal diffusivity of the fluid mixture to the diffusivity of the water vapor, also called 
the Lewis number.

Evaporation corresponds to a positive flux of water vapor to the fluid, while condensation corresponds to a negative 
flux.

The flow solver uses the mass flux as a source term in both the mass and momentum equations and the scalar 
equation.
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10.3.2 Energy conservation equation

The addition or retrieval of water vapor to or from the air as a result of evaporation or condensation also affects the 
overall enthalpy of the fluid mixture. The energy flux to the fluid mixture resulting from evaporation or condensation is 
evaluated as:

 is the specific heat of the water vapor at the fluid temperature, .

This energy flux is a source term in the energy equation.

10.4 Fog formation
The flow solver computes the fog formation in a gas mixture. The gas mixture constitutes the continuum phase, and the 
airborne condensate that forms the dispersed phase. The Quadrature Method of Moments (QMOM) scheme, proposed 
in [53], is used for computing the droplet distribution in the mixture. In addition to the mixture mass, momentum, and 
energy conservation equations, the flow solver solves the conservation equations for the water vapor and the first 2k 
moments of the droplet number density function, where k represents the kth moment of the number density function. 
By default, only the first and second moments are solved.

The conservation equation for the water vapor is as follows:

where:

 is the density of the fluid mixture. 
 is the vapor mass fraction, where   is the vapor density.

  is the effective diffusion coefficient of the vapor into air. It includes both laminar and turbulent diffusions. 
The turbulent diffusion is computed from the turbulent viscosity and the Schmidt number.

 is the source term. It includes the water droplet formation and the droplet growth/evaporation effects.

The droplet distribution in the domain is described by a number density function  , which is the function of 
Cartesian coordinates,  , the droplet radius,  , and time,   .

The kth moments of the number density function is given by:

where:
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  is the effective diffusion coefficient for the droplet number density function. It includes both laminar and 

turbulent diffusions. The laminar diffusion coefficient is computed using the mixture dynamic viscosity and the 
assumption of a Schmidt number of 0.61. The turbulence contribution is obtained using the turbulence viscosity 
and a turbulence Schmidt number of unity.

 is the droplet growth rate.

   is the number of droplets at critical radius,  , generated per unit volume of the mixture per unit time, 
proposed in [54].

The solver uses the nucleation model that corresponds to the homogeneous nucleation where droplets are formed as a 
result of random collisions of water vapor molecules. The homogeneous nucleation source term is given by [54]:

where 

 is the condensation coefficient.
 is the mass of one molecule of water.
 is the surface tension.

 is the Boltzmann constant.
 is the correction factor.

 is the temperature of the saturated vapor.
 and    are the vapor and liquid density, respectivly.

 The heterogeneous nucleation where water droplets are formed as a result of the condensation around small 
suspended aerosol particles is the dominant mode of the nucleation. A model for the heterogeneous nucleation is 
provided in [55] as follow:

where:

 is the average radius of aerosol particles.
 is the number of particles per unit mass of the mixture.

 (cm-2s-1) is the nucleation pre-factor.
 is the factor that depends on the contact angle between the water and the niclei and given by:

where  ,  and  are calculated as:
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Where   is the contact angle between water and the aerosol particles.

The following table lists the advanced parameters to model fog formation in your simulation.

Advanced parameter Default Description

SOLVE EXTRA EQUATIONS TO 

MODEL FOG FORMATION

False When you set it to True, it activates the QMOM 
scheme to model fog formation.

NUMBER OF MOMENT QUADRATURES 

TO SOLVE IN THE QMOM SCHEME

2 Sets the number of moments of the number 
density function to be solved in the QMOM 
scheme. This number must be even.

HETEROGENEOUS NUCLEATION 

NUCLEI AVARAGE RADIUS

-1.0 Sets the average radius of aerosol nuclei, , 
used for modeling the heterogeneous 
nucleation.

HETEROGENEOUS NUCLEATION 

NUCLEI NUMBER DENSITY

-1.0 Sets the concentration of aerosol nuclei, , 
used for modeling the heterogeneous 
nucleation.

HETEROGENEOUS NUCLEATION 

CONSTANT ANGLE

80.0 Sets the contact angle, , between water and 
the aerosol particles used for modeling the 
heterogeneous nucleation.

10.5 Semi-permeable flow surface
The flow solver supports the following methods to model semi-permeable flow surfaces for humid air:

Humidity based permeability permits the diffusion of only water vapor.
Mixture based permeability permits the diffusion of humid air mixtures, including air, water vapor, and other gas 
components.
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10.5.1 Humidity based permeability

In this method, the flux of the water vapor, , across the boundary is given by the following equation:

where

 is the specified ambient water vapor density. If it is not defined, its value is set to zero.
 is the water vapor density at the flow surface location in the computational domain.

 is the specified humidity diffusion resistance. This value can be a constant or time-varying.

The flux crossing the semi-permeable surface depends solely on the difference between the water vapor densities 
across the interface. An outflow is predicted from a humid enclosure to a dry ambient even when the ambient pressure 
is much higher than the enclosure pressure. This method does not allow the pressure to be equalized across the 
boundary in a steady state simulation.

10.5.2 Mixture based permeability

This method is derived from the concept of head loss in the opening boundary condition. The relationship between the 
specified ambient pressure, , the pressure at the opening, , and the specified head loss, , is given by the 
following equations:

For inflows:

For outflows:

Assuming that the velocities,  , in these equations are normal to the surface, the mass flux at the semi-permeable 
surface is calculated as:

The plus and minus sign corresponds to the sign of the pressure difference, . For an inlet, the following further 
assumption is made:  . This assumption is valid for very large values of .

The density  is either equal to the mixture density at semi-permeable flow surface or to the ambient density:
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To suppress the occurrence of alternating inflow and outflow conditions in individual semi-permeable cells at each 
iteration, the flow solver uses a minimum mass flux criterion. With this criterion, when the mass flux is smaller than the 
specified minimum mass flux, the mass flux is set to zero. You specify the minimum mass flux using the MINIMUM 

SEMI PERMEABLE MEMBRANE FLUX  advanced parameter. By default, the specified minimum mass flux is set to 
zero. 

By default, the mass flux magnitude of each cell is compared to the specified minimum mass flux. If the cell mass flux 
magnitude is smaller that the specified minimum mass flux, it is set to zero. You can also apply this criterion on the 
complete semi-permeable flow surface. It this case, the average mass flux magnitude of all flow surface cells is 
compared to the specified minimum mass flux. If the average value is smaller than the specified minimum mass flux, 
the mass fluxes of all flow surface cells are set to zero. You specify the global criterion using the PERFORM MINIMUM 

FLUX CHECK GLOBALLY  advanced parameter.

The minimum mass flux can be computed from the values specified by the manufacturers of semi-permeable 
membranes, as follows:

where:

 is the density of air that can be approximated to 1.0 kg/m3.
 is the minimum volume flow rate given in manufacturer specifications.

 is the vent area that can be computed from the design and dimensions given in manufacturer specifications.

You can specify a constant humidity flux   instead of the loss coefficient. To do this add the following line to 
the user.prm file.

EXPLICIT_HUMIDITY_FLUX=TRUE

The flow solver applies the specified loss coefficient value as the value of the constant humidity flux in SI unit 

 crossing the specified wall face.

For more information on user.prm file, see Flow solver files. 
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11 Modeling non-Newtonian fluid

11.1 Non-Newtonian fluids
In non-Newtonian fluids, the shear stress of the fluid is not proportional to the rate of deformation. Therefore, the 
viscosity is no longer a constant and an additional model is required to model viscosity.

You can use one of the following models in accordance with fluid behavior:

Power-Law model for fluids with dilatant, pseudo-plastic, and similar behaviors. 
Herschel-Bulkley model for fluids with Bingham plastic, viscoplastic, and similar behaviors.
Carreau model that is a generalized model that behaves as Newtonian at low shear rate and non-Newtonian for 
high shear rates.

11.2 Power-Law model
 The fluid viscosity, , of a Power-Law fluid is defined in the flow solver using the following equation:

where:

 is the consistency index.
  is the shear rate.
 is the power law index.

 is the reference temperature.
 is the fluid temperature.

    is the minimum viscosity limit.
   is the maximum viscosity limit.

11.3 Herschel-Bulkley model
 The fluid viscosity, , of a Herschel-Bulkley fluid is modelled in the flow solver using the following equation:

where:

 is the consistency index.
   is the shear rate.

 is the power law index.
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 is the yield stress.
 is the stress value at the intersection point A shown in the following figure.

 is the yield viscosity or plastic viscosity.

Herschel-Bulkley model for shear rate

To smooth convergence, a fluid defined with Herschel-Bulkley model, behaves like a Newtonian fluid until the local 
shear stress reaches intersect (A), shown as the red curve. The yield viscosity, , is a mathematical artefact introduced 
to improve convergence of the Herschel-Bulkley model when the stress is less than the yield stress. The blue curve 
shows the non-Newtonian Herschel-Bulkley behavior after intersect (A).

11.4 Carreau model
 The fluid viscosity, , of a Carreau fluid is defined in the flow solver using the following equation:

where:

 is the time constant.
 is the shear rate.
 is the power law index.

 is the reference temperature.
 is the fluid temperature.

 is the infinite-shear viscosity.
 is the zero-shear viscosity.
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12 Modeling particle tracking

12.1 Modeling of the particle motion
The flow solver uses a one-way coupling between the flow field and the injected particles. Thus, the flow field is not 
affected by the particle transport problem.

The particle transport model, is defined by:

The equations of motion, arising from the statement of the conservation of particle momentum.
The initial conditions to be imposed on a newly-injected particle.

The equations of the particle motion are integrated in time to determine the particle centroid trajectory,   .  

The motion of a spherical particle is caused by the force  acting on a single particle. Thus, the basic form of the 
system of governing equations for the particle trajectory is  a set of ordinary differential equations for position and 
velocity in time:

where: 

 is the particle density.
 is the volume of a particle.
 is the particle velocity vector.

 is the fluid/particle interaction force, decomposed into four portions as:

 is the drag force, which is exerted upon a spherical particle traveling at a constant velocity    in a flow 

with constant mean freestream velocity.  

          See Drag force for more information.

 is the buoyancy force due to gravity.

See Buoyancy for more information.
  is a set of non-drag forces (such as added mass force and pressure gradient), which accounts for the 

particle perturbations of flow field. 
See Non-drag forces for more information.
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•  is a set of other forces, which models the impact upon the particle transport problem of both the 

unresolved turbulent fluctuations of the flow field, and the chaotic motions due to sub-continuum scale 
phenomena.
See Brownian and turbulent diffusion for more information.

The governing equations are integrated to obtain the particle trajectory over the range of times  , where 
 is the injection time for the particle of interest, and the final particle time   is the lesser of the time, at which 

the particle exits the domain and the total simulation time for the particle transport problem,  .

12.2 Drag force
The drag force on the particle is defined follows: 

with local Reynolds number:

where  is the local fluid velocity field in the absence of any perturbation due to the presence or motion of the 
particle.

The flow solver uses the following drag coefficient correlation, by default:

You can specify a fixed drag coefficient . In this case, the flow solver uses it as: 

•
•
•

Note

The flow solver uses the following assumptions for particle tracking:
Spherical particles
No particle-particle iteration
No flow field alteration due to particle motion
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12.3 Buoyancy
The buoyancy force acting on a spherical particle immersed in a fluid is given by:

where:

 is the volume of a particle of diameter, .
 is the particle density.
 is the fluid density.

12.4 Non-drag forces
The non-drag force  consists of:

where:

 is the force applied on the particle due to the pressure gradient in the fluid surrounding the particle that is 
caused by fluid acceleration. It is defined as follow:

  is added mass force to accelerate the virtual mass of the fluid in the volume occupied by the particle. This 
force arises due to the particle moving in an unsteady manner, which accelerates a certain amount of fluid 
surrounding it. According to Batchelor (1967) [28], this force depends on the orientation of the particle shape 
relative to the flow. The added mass coefficient  corresponds to a symmetric tensor whose components 
depend on the geometry of the particle. For a sphere,  is equal to .

Final expression for the non-drag force term becomes:
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12.5 Brownian and turbulent diffusion
The phenomenon of small scale chaotic motion of particles through a fluid, due to the sub‑continuum interactions with 
individual fluid particles, is known as Brownian motion. In the case of a turbulent flow, chaotic motion of particles is 
also observed. It is due to the instantaneous forces arising from the turbulent, continuum-scale fluctuations of the 
velocity and pressure fields. This chaotic motion is estimated within the boundaries of an element during a particle time 
step. 

A particle moves an average distance   in   according to  , where   is the particle diffusivity:

 is the turbulent diffusivity associated with the unresolved turbulent motions.
 is the Brownian diffusivity associated with the sub-continuum effects.

The turbulent diffusivity is computed based on the turbulent eddy diffusivity, as follows:

The Brownian diffusivity is given by:

In these equations:

 is the eddy viscosity based on the turbulent model.
  is the fluid density.
 is the fluid viscosity.
 is the Boltzmann constant.

 is the fluid temperature.
 is the diameter of the particle.

Therefore the perturbations of velocity field due to Brownian and turbulent forces is estimated as:

The presence of the particle inside the element is estimated as:
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Substituting expressions for Brownian and turbulent diffusivities along with the expression for the perturbation of flow 
field, into the expression for the drag force,   becomes:

where the unit vector   that represents the direction of the velocity perturbation is generated randomly, and    is 
the element volume of the mesh.

By default, the flow solver computes the Brownian and turbulent diffusivity term   . When you deactivated this 

term, the flow solver uses  . Usually, you neglect this term when you apply the particle slip correction. For 

more information, see Particle slip correction factor.

12.6 Particle motion equations
The previous pages describe in detail the model employed to determine particle trajectories in the flow solver and the 
final formulation is given by:

Particle motion equations  

The unit vector   is randomly generated. 
The drag coefficient , see Drag force for details. 
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The velocity field  and modified pressure field  are the fluid velocity and pressure fields found by the 
flow solver.
The equations for the initial position     and velocity   of the particle are described in 
Initial conditions for injected particles. 
For the particle motion assumptions, see Modeling of the particle motion.

12.7 Particle slip correction factor
The flow solver solves the particle motion equations for a rigid sphere by imposing a no-slip assumption at the particle 
surface. This assumption breaks when the Knudsen number   is high. This occurs when the particle size, given 
by its diameter   is the same order as the mean free path  of the particle. Since the particle diameter  is usually 
fixed, it is the mean free path  of the particle that dictates whether this assumption is valid or not. 

When the no-slip assumption is no longer valid, the flow solver corrects the particle traction force by dividing it by the 
Cunningham correction factor   [34]: 

where  ,  , and   are experimentally determined constants that are equal to 1.165, 0.483, and 0.997, respectively for 
ideal gases. The only unknown in the previous equation is the mean free path of the particle in the Knudsen number. 
The mean free path of the particle can be determined by evaluating the equation: 

where:

 is the absolute temperature of the ideal gas.
 is the absolute pressure of the ideal gas.
 is the specified Sutherland constant for the viscosity of the gas.
 is the specified reference temperature of the gas.
 is the specified reference pressure of the gas.
 is the reference mean free path of the gas at temperature   and pressure  , given by the following 

equation:

 is the reference viscosity of the ideal gas.
 is the reference density of the ideal gas, which is calculated using ideal gas law.
 is the Boltzmann constant.

 is the Avogadro's number.
 is the universal gas constant.

 is the specific gas constant, which is obtained from the gas material properties.
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The flow solver applies this correction factor to the net traction force acting on the particle surface in the following two 
ways:

The equations of motion for the particle trajectory is the corrected form given by:

Where  is the uncorrected traction force  . For detailed equations of 

these forces, see Particle motion equations.

12.8 Initial conditions for injected particles
In the flow solver, any portion   of the piecewise-defined domain boundary may be selected as an injection surface. 
You must specify the initial conditions  and  imposed at the injection time  for the particle 
of interest, from which the particle motion equations are integrated. For each particle injected at a given injection 
surface, a randomly chosen initial location  is imposed. The initial velocity  may either be specified by the 

user, or be set equal to the local fluid velocity, that is  .

In the flow solver, the injection times belong to the range . In a transient simulation, the total 
injection time , and the total time  , are equal to the total simulation duration for the fluid flow problem.  For a 
steady state simulation,  and  are specified by the user, and for the purposes of the particle transport problem, 
the steady state values of the flow field are used at any time . Denoting by   a defined output time for the particle 
tracking problem, the expected value  the total number of particles to be injected over the interval 
 is given for a specified injection rate  of particles per unit time, as:

12.9 Boundary treatment
Special consideration must be taken when the particle reaches the following boundary types of the flow domain:

Wall boundaries
Inlet boundaries

Note

Regardless of the method in the flow solver by which the injection rate is specified, it is always transformed by 
flow solver into a value   (particles per unit time). Then, the number of injections over the interval is 
determined from a rounding of   to an integer value. The injection times   for each particle to be injected 
are then randomly distributed on  .
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Symmetry boundaries
Periodic boundaries

The boundary   of the flow domain is represented by the union of a set of surfaces  , with a consistent boundary 
condition applied over each surface  . The boundary represents a discontinuity in the equations of a particle motion 
at time   and a position of particle  . Therefore special boundary treatment is required. In the flow 
solver, the forces arising at boundaries are treated as impulses over a vanishingly small time, so that the particle 
velocities are modified discontinuously. 

12.10 Wall boundaries
The flow solver treats both slip or no-slip wall boundaries identically in the particle transport problem. Figure below 
depicts the case when the particle, shown in red, reaches a wall boundary . In the flow solver, the impact, denoted 
by  , is approximated as an instantaneous event at time  .

Denote the particle approach velocity predicted by the integration of the particle motion equations and the departure 
velocity after application of the boundary treatment, respectively as:

The flow solver applies different boundary treatments depending on the particle impact type:

Note

At boundary surfaces  over which particles exit the domain (an outlet or opening boundary), the particles 
exit smoothly, and no further modeling is required.
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At walls with particle impact type set to stick, when the particle reaches the wall boundary, the wall-normal 
component of particle velocity     regardless of and the particle continues to be counted towards 
the statistics, so that an accumulation of particle density at the wall is captured.
At walls with particle impact type set to rebound, when the particle reaches the wall boundary, the wall-normal 
component of particle velocity is modified as follows, using the collision model with the coefficient of restitution 

 [32]:

        where  is the outward unit normal vector to the boundary surface for all .

The coefficient of restitution is a measure of the portion of the energy associated with the wall normal component 
of the approach velocity, which is retained after the collision. For a purely elastic collision,  and the particle 
is reflected off of the wall with no loss of energy. When , the particle loses all wall-normal momentum 
during the collision.

The integration of the particle motion equations is then continued from the predicted location  , with the 
imposed velocity .

The flow solver continues to track particles that stop at walls and considers these particles in the output statistics.

12.11 Inlet and symmetry boundaries
The flow solver does not allow particles to exit the flow domain across an inlet or symmetry boundary. This condition, 
similar to the wall boundary treatment with an assumption that the normal particle velocity component is removed. 
The departure velocity is given by:

The integration of the particle motion equations is then continued from the modified state defined by the predicted 
location  with the imposed velocity .

12.12 Periodic boundaries for particle tracking
In the flow solver, a particle that reaches a periodic boundary is presumed to pass through to the corresponding point 
on the matching periodic face. If  is the location across the periodic boundary for any , then for the 
approach point obtained from integration of the particle motion equations, denoted by , the departure point  is 
given by:
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In addition, at a rotationally periodic boundary defined by a rotation of an angle  , about an axis directed along the 
unit vector  and with the center of rotation , the departure velocity is obtained by a rotation imposing 
conservation of the cylindrical components of the velocity vector across the periodic boundary, according to:

where  is the Kronecker delta tensor and   is the permutation tensor. In the case of a translational periodicity 
condition, the following condition is imposed:

The integration of the particle motion equations is then continued from the modified state defined by the imposed 
location  with the imposed velocity .



Modeling fluid structure interaction

Flow Solver Reference Manual 127

•
•
•
•
•
•
•
•

13 Modeling fluid structure interaction
Fluid structure interaction (FSI) computations account for motion or deformation of the solid structure boundaries that 
are interacting with the adjacent fluid flow.

13.1 Transient fluid structure interaction
The flow solver uses the arbitrary-Lagrange-Eulerian (ALE) form to discretize the governing equations for FSI modeling. 
Integration of the governing Navier-Stokes equations in the ALE form over a moving control volume   [57] is given 
as:

where:

 is a conserved quantity (mass, momentum and energy).
 is the convective flux term.
 is the viscous flux term.

 is the control volume boundary.
 is the control volume boundary surface.

 is the velocity of the control volume boundary.
 is the normal vector to the control volume boundary.

  is the time.

The discrete form of the governing equations in the ALE form is given as:

where the discrete convective flux in the ALE form is:

and the discrete viscous flux is: 

and  are the control volume boundary positions.
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The following source term is added to the right hand side of the discrete form of the governing equation, to satisfy the 
geometric conservation law, by assuming that the state of   is an exact constant solution for the governing equation.

13.2 Static fluid structure interaction
The flow solver uses the following discrete form of ordinary differential equation (ODE) to compute FSI modeling with 
static mesh.

where:

 is a conserved quantity (mass, momentum and energy).
 is the grid face velocity.

 is the control volume.

The grid face velocity is defined as:

where   is the surface normal.

In static FSI modeling, the velocity of the control volume boundary, , is zero and the control volume depends on the 
control volume grid coordinates,  as:

Knowing the grid coordinate positions and velocities as a function of time, for a first order time accurate scheme, the 
flow solver uses the following discretization of the ODE for the static FSI modeling:

where   is the current time step.
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14 Discretization

14.1 Control-volume method
The flow solver uses a finite-element based control-volume method, [5], for discretization of the governing equations.  
With this method, the governing equations are integrated over a control volume and over a time step. For example, the 
integration for the conservation equation of the passive component is:

 is the control volume.
   is the time step. 

Using Gauss's theorem to convert a volume integral to a surface integral, it becomes:

 is the unit outward surface normal of the control volume surface.
 is the outer surface area of the control volume. 

The flow solver approximates numerically the volume and surface integrations over a discrete finite volume defined on 
a computational grid or mesh. For instance, the advection term is approximated as:

where the discrete mass flow through a finite sub-surface of the finite volume is defined as follows:

In these equations:

 denotes the integration point of the sub-surface.
 is the sub-surface area.

   is the transport variable. 

The following figure illustrates the finite volume (4) defined from elements (1) in the element-based finite volume 
method, [5].  All the dependent variables, including the pressure and the velocity components, are stored at the 
element nodes (2). This is a co-located method. Each finite volume sub-surface is an element bi-sector plane (3). In this 
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example, a complete finite volume results from two surrounding quadrilateral elements and three triangular elements. 
These sub-surfaces are called integration point surfaces. The software computes the integral at their mid-points (6). 
This method of finite volume definition extends directly to 3D.

The following figure depicts an isolated element with the integration point surfaces and the finite volume sectors.

The discretization scheme approximates the volume integrals over the element sectors and the surface integrals on the 
element integration point surfaces. For each element, the flow solver makes the discrete approximations to the terms in 
the integrals and combines them in the overall equation assembly. 

14.2 Spatial discretization

14.2.1 Governing equations discretization

The mass conservation equation gives:
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where:

 The superscript o refers to the value at the previous time step.
  .

For gases, the transient term is expressed as:

where   is the ideal gas constant.

The velocities at the integration point,  are evaluated from momentum equations for the integration point 
velocities [5]. The resulting form of the mass conservation equation contains a pressure redistribution term, which 
resolves the pressure-velocity coupling problem that is typical of colocated methods [6].

The discretized form of the momentum conservation equation for velocity , is defined as follows:

where .

Similarly, the discretized conservation equations for energy is given by: 

 The equation for the passive component is given by:

where:

.
.

The discretized conservation equations for water vapor and turbulence quantities can be written similarly. The flow 
solver treats all these equations similarly as they all have similar form.
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The terms in these equations are:

Transient 
Convective 
Effective diffusion 
Source 

14.2.2 Diffusion terms

The general form of the diffusion term is:

The derivatives at an integration point  are evaluated using shape functions.

Given the ( , , ) coordinates of the nodes within an element, the value of the field variable,  , is calculated using 
the shape functions, as follows:

where   is the number of nodes in the element.

The flow solver determines the shape functions for an element, indentifying the ( ,  ,  ) coordinates of the element 
nodes. An appropriate polynomial in ( ,  ,  ) coordinates and that the shape function corresponding to a particular 
node is unity at that node and zero at all other element nodes. The derivatives of the field variables are then evaluated 
using   nodal values and derivatives of the shape functions as follows:

14.2.3 Pressure term

The flow solver calculates the pressure term,  , using shape functions. For more information, see mass 
conservation equation discretization. The pressure at the integration point  is defined as:

where   are the nodal pressure values.
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14.2.4 Source terms

The flow solver computes the discretized source terms by multiplying ,  and  by the volume of the control 
volume.

14.2.5 Convective terms

In the discretized form of the passive component equation, the term   represents the summation of the 
convective or advective fluxes across the boundaries of a given control volume. This quantity is evaluated using nodal 
values with first-order or higher-order schemes.

The values   or   from a Taylor's Series are evaluated as follows:

where:

H.O.T. stands for higher order terms.
When   is approximated only by the first term of the Taylor series, the truncation error is first order. In this 
case, the advection scheme is a first order scheme.  
When   is approximated by the first two terms of the series, the truncation error is second order. The 
advection scheme is a second order scheme.

The flow solver uses the first order Upwind Differencing Scheme (UDS) by default. The following higher order schemes 
are also available: 

Quadratic Upwind Interpolation for Convective Kinematics (QUICK ) scheme
Second Order Upwind (SOU) scheme
Second-Order Central Differencing (CDS) scheme
Second-Order High Resolution (HI-RES) scheme
Second-Order Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) scheme 

Higher order schemes help to considerably reduce false diffusion but they still produce a truncation error. Their 
truncation error is dispersive and can lead to unphysical oscillations and numerical instability. Higher order schemes 
give more accurate solutions than UDS scheme but they are less stable, which can lead to oscillatory convergence. They 
generally require higher calculation time.

To eliminate the oscillations that are inherent to most higher order schemes, you can impose a bound on the convected 
face values. The bounds are imposed through flux limiters. Flux limiters limit the transport variable,  , to ensure it lies 
between specified values. 
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First-order UDS scheme

The first-order Upwind Differencing Scheme (UDS) approximates   by the value of   at the upstream node:

With this scheme, the solution is very stable and converges quickly. The UDS generates accurate results only if there 
are no gradients in the flow fields. Otherwise, there can be false diffusion in the solution field, which is characterized by 
serious smearing of expected gradients [7]. To reduce the error introduced by false diffusion, it is recommended to use 
higher order schemes.

Second-order QUICK scheme

The Quadratic Upwind Interpolation for Convective Kinematics (QUICK) scheme approximates   with the higher-
order values of the transport variable. It uses a two points upstream and one point downstream weighted quadratic 
interpolation of the transport variable.

This second-order scheme can produce a higher precision solution [41]. However, this scheme has the lowest stability in 
the regions with strong gradients and is most appropriate for steady flows.

Second-order SOU scheme

The Second-Order Upwind (SOU) scheme approximates  by adding the numerical advection correction    to 

the Upwind Differencing Scheme (UDS) equation to reduce the diffusive properties of the first-order UDS.

The numerical advection correction term is an approximation of the nodal gradient.

The SOU advection scheme provides better precision results than the first-order UDS advection scheme. The SOU 
scheme is less robust than UDS in regions with strong gradients but more stable than the QUICK scheme. When using 
this scheme, it is necessary to apply flux limiters to the predicted transport variable.
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Second-order CDS scheme

The Central Differencing Scheme (CDS) approximates   as follows, with reference to the geometry depicted in the 
figure of the Shape function section:

where:

 is the shape function associated with the node .
 is the local characteristic mesh spacing.

 is the order of accuracy of the shape function. 

When the CDS approximation has the generation of spurious oscillations in the solution field, it is implemented in the 
flow solver as a correction to the implicit UDS scheme, with the imposed flux limiter  , so that at iteration 
of the solution the procedure is defined as:

The CDS scheme provides a more accurate representation of the convective fluxes than the UDS scheme and is 
computationally less time-consuming than the QUICK and SOU second-order schemes. 
The CDS advection scheme is appropriate for for low speed flows with small Peclet number.

Second-order HI-RES scheme

The second-order high resolution scheme (HI-RES) approximates   by the value of   at the upstream node, plus a 
higher order correction   value:

Unlike other second-order schemes HI-RES does not require a limiter [42] . HI-RES uses a special numerical technique to 
calculate the limiter at each node and adapts the discretization to avoid any unwanted unboundedness.

Second-order MUSCL scheme

The second order Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) approximates the value of  
 with the intercell flux field value , which is computed by the average of fluxes at the current and next spatial 

locations:
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where:

 is the field value at the upwind node   relative to the integration point .
 is the field value at the downwind node  relative to the integration point .
 is the specified flux limiter function. For more information, see Flux limiters.

 is the ratio of the upwind-side gradient to downwind-side gradient. It is defined as:

This advection scheme provides better precision and convergence for simulation with high aspect ratio grids and 
meshes. The flow solver applies a flux limiter to the predicted transport variable to avoid inaccuracy related to spurious 
oscillations.

Flux limiters

The concept of flux limiters is similar to Total Variation Diminishing (TVD) schemes that are used in gas dynamics [14]. A 
limited higher order estimate for the value   at an integration point whose upwind and downwind neighbors are 
nodes   and  , respectively, is expressed according to the following equation:

where:

The subscript   denotes the unlimited higher-order approximation.
 is the limiter  .

The limiter is a blending between the UDS scheme and the higher order scheme. The flow solver selects the limiter as 
the largest possible value within the solution, which prevents the development of undesirable artifacts, such as 
unbounded values or spurious oscillations.

SOU, QUICK, and CDS limiters

The limiters used for the SOU, QUICK, and CDS schemes are based on the convective boundedness criterion [15]. The 
integration point value of   is limited as a requirement of the convective boundedness criterion by:

The limiter is determined using the following equation:



Discretization

Flow Solver Reference Manual 137

•
•

•

•

where   is the closest value to  .

When the high-resolution advection scheme is selected, the unlimited second-order numerical advection correction 
approximation is employed, which is based on the cell-centered gradient, , at the upwind node:

In this case, the limiter is determined according to the following equations [27]:

where:

 is the average mesh spacing.
 is an extremal value over the stencil of the node  . Stencil is the geometric arrangement of a nodal group 

that relate to the node .
The factor   is a blending of the limited and unlimited solutions, and determines the magnitude of oscillations 
in the solution.

The maximization in the first equation is carried out over all integration surfaces bounding the control volume about 
node  .

MUSCL limiters

The Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) scheme uses the flux limiter function when 
approximating the value of .

The flux limiter function,  is based on the ratio,  [63], of the upwind-side gradient to downwind-side gradient, 
which is defined as:

The available limiter functions for the MUSCL scheme are:

Van Albada [60]: 
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Minmod [61]:

Superbee [61]:

Van Leer [62]:

The flux limiter functions exhibit second-order TVD behavior. They are designed to traverse a specific region of the 
solution, known as the TVD region, to ensure the stability of the scheme. Second-order TVD limiters adhere to the 
following criteria:

14.2.6 Shape function

The flow solver computes solution variables, such as velocity components, pressure, and temperature at the mesh 
nodes. It then approximates the solution variables at arbitrary points in the computational domain with shape 
functions. The shape functions interpolate solution variables from mesh nodes to the arbitrary point with given nodal 
solution variables, and the coordinates of an arbitrary point in the computational domain.

The shape function representation is:

where:

 is the solution value at node .
 is the finite element shape function associated with the same node.

The flow solver uses two types linear-linear and tri-linear shape functions for its interpolation approximations. The 
following figure depicts the locations of the  employed in conjunction with the expansion of the shape function for 
the quadrature of integration surface  .
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 Location   for linear-linear interpolation  Location   for tri-linear interpolation

Control volume finite element discretization

The shape functions  always represent a tri-linear interpolation over element  to the arbitrary point .

 The linear-linear shape function imposes a selection for  lying at the midpoint of the vector, which joins node 
with its neighbor  across . The values of  and the directional derivative  along the vector 

, are reduced to the following approximations:

By default, the flow solver is set to low resolution mode and uses linear-linear shape functions. When you choose high 
resolution mode, the flow solver uses tri-linear functions.
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Skewed element treatment

The flow solver uses the finite element method to compute the gradient of the solution field   for mesh elements. To 
improve the solution quality for skewed elements, it uses the finite difference method.

 For skewed elements, it is assumed that the tangential component   is negligible on integration surfaces. The 
normal component     is along the unit normal vector of the integration surface  and is calculated as follows:

where:

 and   are the solution values at nodes  and .
,   are the coordinates at nodes   and  .

 is the unit normal vector for each integration surface.

The skewed elements treatment is active by default. To deactivate it, add the following line to the user.prm file.

SKEWED_ELEMENTS= FALSE

For more information on the user.prm file, see Flow solver files.

14.3 Temporal discretization
The flow solver uses the following flow time integration methods: 

Backward Euler scheme, which is the fully implicit first orders scheme.

Crank-Nicolson scheme, which is the semi-implicit second-order scheme. 

The semi-discrete form of the integral transport equation for a conserved quantity  , written for the control volume 
centered at the node   depicted in the figure on the shape function section:
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where:

 is the local volumetric rate of generation of  .
 is the total flux vector of  .
 is the outward unit normal vector.

14.3.1 Backward Euler scheme

In the fully implicit first order scheme, the integral transport equation is integrated from the time   to the time 
, yielding:

14.3.2 Crank-Nicolson scheme

In the semi-implicit second-order scheme, the integral transport equation is integrated by applying a second-order 
quadrature rule in the approximation of the time integral of the fluxes and sources, yielding:

In comparison with the fully-implicit time integration option, which results in an   truncation error, the use of 

the second-order accurate temporal discretization of the equation allows the accurate resolution of transient flow 
features with a significantly larger timestep. 

However, the semi-implicit time integration method is susceptible to spurious, oscillatory temporal variation of the 
solution field if too large a timestep is employed. This method should not be selected when a timestep is large in 
comparison with the bulk time scale of the problem.

Notes

When you use the  AUTO TURN-OFF FLUIDS EQUATION SOLVE  advanced parameter in a transient 
analysis, the flow solver reactivates a frozen solution at the beginning of each time step and iterates at least 3 
times, even if the solution converged in prior iterations. If the solution did not converge, the solver continues 
iterating within the time step until it reaches the convergence. 
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14.3.3 Steady state - Local time step method

The flow solver computes the local time step method using the quantity,  , between two consecutive iterations:

where:

 is the number of the iteration.
 is the change in the quantity  .

Using the control volume centered at the node  , which is depicted in the figure on the shape function section, the 
discrete form of the transport equation for the conserved quantity is given:

where   is the source term.

A combination of the two previous equations gives:

where  .

The flow solver computes the local time step at each control volume, using the local velocity and element length scale. 
It solves the following equation using the local time step method and relaxation factor, :

All the diagonal terms of the coefficient matrix,  , are scaled by  , in which the lower value of the relaxation 

factor provides more relaxation to the convergence process but usually increases the computational cost.
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14.4 Other discretization methods

14.4.1 Disjoint mesh pairing

The flow solver needs to control the fluxes across the interface between two disjoint meshes. The interface is a coplanar 
face pair where the nodes and elements of the associated fluid meshes are not coincident. 

(1) Control surface

(2) Sub-faces

(3) Source node 

(4) Unmapped face

The schematic depicts the interface between the source and target sides with the different element types. Each element 
face is divided  into many sub-faces (2) using integration points: sub-faces   for the source side and sub-faces   for 
the target side. The sub-faces from the source side and the target side are overlapped creating intersecting control 
surfaces   (1). The area contribution fraction of each control surface is evaluated based on the intersection of the 
control surface (1) with the sub-face (2). When there is no intersection between source and target element faces, the 
unmapped element face is treated as a wall (4).

The area fraction of the sub-face   contributing to the sub-face   is given by:

The area fraction of the sub-face   contributing to the sub-face   is given by:
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So that

where:

 is the ith control surface.
 is the area of the sub-face of the source element face.
 is the area of the sub-face of the target element face.

 The solver uses these area fractions for transferring conserved fluxes such as advection, diffusion, mass etc. from one 
mesh to the other. Conserved fluxes on each control surface are computed as follows:

The fluxes of the face elements on each side ( ,  ) are first computed independently. 
The flux of a control surface   is an area average of the two fluxes:

The   and   are the implicit and conserved fluxes that are normally computed on a face. The previous 
equation redistributes an average of the computed fluxes on both sides.
The redistributed fluxes,  , are then added to their target nodes on each side. Therefore, the implicit fluxes 
added to the equations on each side are:

The advection fluxes across the interface between two disjoint meshes are first-order accurate.

With this redistribution procedure, the following conditions are automatically satisfied to define a conservative transfer 
of fluxes through the interface.

where:

 is the number of control surfaces to overlap the sub-face  .
 is the number of control surfaces to overlap the sub-face  .

Pressure drop due to flow through the screen on disjoint meshes 

The flow solver computes the pressure drop due flow through the screen on disjoint meshes based on average velocity 
 across disjoint fluid mesh pairing:
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where   is the total head loss coefficient.

Then,   is added as a surface term (pressure force) to the momentum equations on the disjoint fluid mesh pairing 
interface.

14.4.2 Immersed boundary method

The flow solver can use the immersed boundary method based on the ghost-cell method to discretize and solve CFD 
equations. This method allows you to implement boundary conditions for the immersed boundaries without modifying 
the overall finite-volume algorithms. In this method, the occurence of the immersed boundary is introduced at the halo 
nodes (HN). Halo nodes belong to immersed boundary elements (BE) and coincide with the solid node. A boundary 
element in the immersed mesh is a cell that contains part of both the solid body and the fluid domain. The flow 
variables at the halo nodes are calculated to implicitly satisfy the wall boundary condition using the values at the body 
intercept points (BI) on the immersed boundary and at the image points (IP). The image point is created by extending a 
line normal to the immersed boundary, from the halo node to the body intercept point, such that the body intercept 
point lies at the midpoint of the line connecting the halo node, and the image point. The values near the boundary are 
calculated using the value at the halo nodes with the appropriate finite difference schemes. 

Boundary intercept method

The general variable, , at an image point, is obtained using trilinear interpolations in an explicit or implicit fashion:

where   is the interpolation coefficient.
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The flow solver calculates variables at the halo nodes using linear interpolation between the known values at the image 
point, and the assigned boundary condition (Dirichlet or Neumann) at the immersed body surface.

The Dirichlet boundary condition assigns the value of the variable at the body intercept,  .

A linear interpolation implies that:

Based on the previous equations, the value on the halo node for Dirichlet boundary condition is computed as follows:

The Neumann boundary condition assigns the normal derivative at body intercept point.

The central difference method implies that:

where   is the distance between the halo node and the image point node.

Based on these equations, the value on the halo node for Neumann boundary condition is computed as follows:

Depending on the type of boundary condition, one of the two equations for   replaces the conservation equation 
for the halo node in the linear system. For more information, see Governing equations.

The trilinear interpolation scheme is used for the image point of the halo node that is located in the fluid region only.  If 
both an image point and a halo node are located in the solid region, for example, a sharp concave corner geometry as 
shown in the following figure, the versatile sharp interface immersed boundary method is used [56].
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14.4.3 Mesh moving methods

The flow solver uses the following methods to compute the mesh movement in fluid structure interaction modeling:

Radial basis function (RBF) method
Inverse distance weighting (IDW) method
Laplace smoothing equation method

The RBF method computes the nodal displacement of the fluid mesh using a radial basis function interpolation. The 
IDW method computes an interpolated value for the fluid mesh using an inverse distance weighting interpolation 
technique. The Laplace smoothing equation method computes the fluid nodal displacement by solving the Laplace 
equations. The IDW method computes translation and rotation separately to preserve a better orthogonality of the bulk 
fluid mesh region compared to the RBF method. The RBF method requires a linear system computation for each fluid 
mesh displacement, which makes it less robust than the IDW method. For models with a high number of mesh points, 
the Laplace smoothing equation performs much faster than both the RBF and IDW. With this method, the flow solver 
computes the wall distance each time the mesh is moved, to calculate the diffusion coefficient for the next iteration.
This is useful in FSI modeling when you use turbulence models that require a wall distance computation.

Radial basis function method

The flow solver applies radial basis function (RBF) interpolation to derive the nodal displacement in the fluid mesh by 
applying the nodal displacement on the structure boundary for FSI computation [58]. The nodal displacement of the 
solid structure boundary and fluid internal mesh is computed by:

where:
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 is the node position on the boundary and represents the ,  and  coordinate components, 
respectively.

 is the number of nodes on the boundary.
 is the Euclidean distance.

The flow solver uses the following RBF:

where:

 is the smoothing factor.
 is the radius.

The   coefficients are computed as follows:

where:

   is the displacement of the nodes on the structure boundary.
   is the location of the displaced nodes on the solid structure boundary.

The nodal displacement in the fluid mesh,  , is computed by:

where   is the node position in the fluid mesh and represents the ,  and  coordinate components, 
respectively.

Inverse distance weighting method

The flow solver uses the inverse distance weighting (IDW) method in the FSI modeling to compute the interpolated 
value,  , at a given node,  , in the fluid mesh as a weighted average value of the structure boundary nodes, 

, [59]. The interpolated value is defined as:

where:
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 is the node position on the structure boundary and represents the ,  and  coordinate 
components, respectively.

 is the distance between fluid node and boundary node.
 is the number of boundary nodes.

 is the weighting function.

The distance between fluid node and boundary node is computed as:

The flow solver uses the following two-exponent form of the weighting function to compute a rigid deformation near 
boundaries and a viscous mesh deformation in the fluid mesh.

where:

 is the area weight assigned to the boundary node, .
 is the estimated length of the deformation region.

 is the estimated size of near body influence region.
.
.

The estimated length of the deformation region is computed as:

where  .

The estimated size of near body influence region is computed as:

where:

 is the average displacement field.
.

The average displacement is computed as:
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Laplace smoothing equation method

The flow solver uses the Laplace smoothing equation method to compute nodal displacement in the fluid mesh [60]. 
The Laplace operator is:

where:

 is the nodal displacement.
 is the spatially varying diffusion coefficient.

The spatially varying diffusion coefficient is computed as:

where   is the nodal distance from the wall boundary.

The nodal location after displacement,  , is computed as:

where   is the most recent nodal location before displacement.

The flow solver computes the wall distance each time the mesh is moved to calculate the diffusion coefficient for the 
next iteration. This is useful in FSI modeling when you use turbulence models that require a wall distance computation.
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15 Solver numerical methods

15.1 Linear equation solution
 The preconditioning method to the basic iterative algorithm is a Incomplete Lower Upper factorization method. As this 
is not a direct solver, it is used within an iterative refinement loop, in which the exact solution is calculated with 
iteration.

The system of equations can be written symbolically as:

 is the coefficient matrix.
 is the solution vector (e.g. the  ).
 is the coefficient vector. 

Solving this iteratively, one starts with an approximate solution,  , that is to be improved by a correction,   to yield 
a better solution,  , i.e.,

where 

 is a solution of the following equation:

   is the the residual given as:

The approximate iterative solver is used to solve the  . 

15.2 Solver methods
The flow solver uses iterative Krylov methods, [46] to solve large set of algebraic equations resulting from the discrete 
approximation of differential equations. Krylov subspace methods work by forming a basis of the sequence of 
successive matrix powers   times the initial residual , the Krylov sequence with iteration number :
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The approximations to the solution are then formed by reducing the residual over the subspace formed by the Krylov 
methods.

The flow solver uses an adaptive multi-methods for efficient solver selection, where the linear solver method is selected 
dynamically by observing linear system properties as they evolve during the simulation process. Selection of an 
appropriate solver can lead to benefits such as reduced memory requirement, lower execution time and reliability.

The dynamic linear solver can use four Krylov methods:

BiCGStab(1)
BiCGStab (2), where 2 is the second degree polynomials.
IDR(4), where 4 is the size of the initial orthogonal set of vectors used for the reduction process.
GMRES (30), where 30 is the size of the Krylov subset.

and two preconditioners:

Algebraic multigrid preconditioner for fully coupled flow scheme with the following smoothers:

Block Gauss-Seidel
Incomplete LU (ILU) decomposition
Algebraic Domain Decomposition

The following table shows the 12 combinations of the algebraic multigrid preconditioner:

BiCGStab(1) - Block Gauss-Seidel BiCGStab(1) - ILU BiCGStab(1) - Algebraic Domain 
Decomposition

BiCGStab (2) - Block Gauss-Seidel BiCGStab (2) - ILU BiCGStab (2) - Algebraic Domain 
Decomposition

IDR(4) - Block Gauss-Seidel IDR(4) - ILU IDR(4) - Algebraic Domain 
Decomposition

GMRES (30) - Block Gauss-Seidel GMRES (30) - ILU GMRES (30) - Algebraic Domain 
Decomposition

      2. Incomplete LU (ILU) decomposition for single variable transport equation with the following options:

Fill-in ILU
Overlap ILU

The following table shows the ILU decomposition combinations:

BiCGStab(1) + Fill-in ILU + Overlap ILU

BiCGStab (2) + Fill-in ILU + Overlap ILU
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IDR(4) + Fill-in ILU + Overlap ILU

GMRES (30) +Fill-in ILU + Overlap
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16 Flow solver files
The following table describes the flow solver files, which are written in the run directory during the solving process.

File name Description

escerr.dat Contains the warnings and error messages issued by the flow solver during a solution.

flowdata.bfd Contains the results shared among all the processes of the flow solver (nodal 
coordinates, element connectivity, list of variables, etc.), which are passed to the results 
BUN file.

flowdata_i.bfp Contains the results corresponding to each process from the flow solver, which are 
passed to the results BUN file. Here, i indicates the process number associated with the 
current file.

flow.bfi Contains the boundary condition types and values specified on each selected boundary 
face.

flow.cfn
Relates fluid faces to their correspondent coated shell element surfaces. The flow solver 
uses fluid faces and the thermal solver uses shell element surfaces in the coupled 
thermal-flow analysis.

This file also contains the method that the flow solver uses to compute the initial heat 
transfer coefficient values for natural convection problems.

flow.csc Exchanges the control parameters between flow and thermal solvers during the 
simulations.

flow.ent Contains the number and name of each flow boundary conditions and additional 
information on flow surfaces.

flow.fbc Transfers boundary conditions defined on the faces from the thermal solver to the flow 
solver through a converter function.

flow.gem Contains information about geometry:

Element geometry definitions
Nodal coordinates 
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File name Description

flow.ibd Contains the boundary condition types and values specified on each selected immersed 
boundary when you solve an immersed boundary model.

flow.ibg Contains the following information when you solve an immersed boundary model:

Halo nodes
Boundary elements
Immersed triangles

flow.icp Contains the following information when you solve an immersed boundary model in a 
coupled thermal-flow analysis:

Flow surface types
Convection properties
Flow surfaces information
Thermal elements

flow.job Contains the completion status of the run and summarizes the CFD results, when the run 
terminates successfully.

flow.mgd Contains global summary information about the flow model, number of nodes, and 
number of elements.

flow.opn Contains a list of face elements that form openings. These face elements are grouped in 
sets that geometrically form a contiguous opening.

flow.prm Contains the following solution control parameters, which define the run: 

Steady-state relaxation timestep
Iteration limits and convergence criteria
Discretization parameters
Advection scheme
Turbulence model type
Specified advanced parameters

flow.prp Contains the following information:

Material description
Fluid material property definition
Enclosures material information
Variable boundary condition definition
Fan head loss information
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File name Description

flow.pst Contains face-based and nodal-based results for post-processing purposes.

flow.restart Stores a selected flow solver memory image that is used for restarting the flow solver.

flow.struct Contains a memory map of the flow solver in the form that is stores in the 
flow.restart  file.

flow.vsi Contains the volumetric boundary condition type and its specified values on the selected 
polygon body for each volumetric boundary condition in the model.

groups.unv Contains the groups that have an information about warnings and error messages issued 
by the solver.

ibm.prm Contains advanced parameters used for immersed boundary analysis.

user.prm Contains user-specified optional solver parameters that are not available in the advanced 
parameters catalog. These parameters, which are provided by the customer support, let 
you modify the behavior of the flow solver to enhance its capabilities for specific 
problems. You create the user.prm  file using a text editor in your run directory.
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