
Flow Solver API Manual

June 2024

Flow Solver API Manual 2

Proprietary & Restricted Rights Notice
© 2023 Maya Heat Transfer Technologies Ltd. All Rights Reserved. This software and related documentation are
proprietary to Maya Heat Transfer Technologies LTD.

All trademarks belong to their respective holders.

Flow Solver API Manual 3

Table of Contents
Proprietary & Restricted Rights Notice ... 2

Table of Contents... 3

Introduction to the flow solver API.. 5

Flow solver plugin interface.. 6

Flow solver API classes.. 8

Class Hub... 10
Hub methods..10

Class BoundaryCondition ... 23
BoundaryCondition methods ..23

Class Equation ... 29
Equation methods..29

Class Vector... 34
Vector methods..34

maya::cfd definitions.. 37
maya::cfd Variable enumerators...37

maya::cfd VariableGradient enumerators ..39

maya::cfd EquationParameter enumerators ..39

maya::cfd BcType enumerators ..39

maya::cfd BcMethod enumerators ...40

Typedef for enum class value error handling...40

Supported flow plugin compilers .. 41

Flow solver plugin workflow ... 42
Linking the plugin to the flow solver ...42

Setting plugin parameters ...43

Example of an API plugin for a generic transport equation.................................... 44
Equation..44

Flow Solver API Manual 4

Example of the GeneralModel header file ..44

Example of the GeneralModel plugin class..45

Introduction to the flow solver API

Flow Solver API Manual 5

•
•

•
•

Introduction to the flow solver API
The flow solver Application Programming Interface (API) allows you a limited access to the internal data-structure and
functionalities of the flow solver. You can create a user-defined plugin in the form of a dynamic-link library (dll) to
extend the capabilities of the flow solver. This manual describes the additional capabilities that the flow solver API
offers you, and how you can use those capabilities to create your user-defined plugin.

You can use this API to:

Access some variables, material and physical properties and boundary conditions defined in your model.
Write your own functions or correlations to define new boundary conditions, material properties or specific
model parameters.
Add specific source terms to scalar equations.
Create and solve transport equations.

Flow solver plugin interface

Flow Solver API Manual 6

Flow solver plugin interface
The parallel flow solver lets you load a user-defined plugin in the form of dynamic-link library (dll) and incorporate the
added functionalities. Upon the flow solver request, the dll file must provide a user-defined plugin interface with the
object of type IFlowPlugin. You write the implementation of the plugin interface. You can find the prototype of the
plugin interface in the [installation_path]\nxcae_extras\tmg\include\plugin_prototype\IFlowPlugin.h file. Use the
following methods with dynamically loadable symbols in the dll file:

PLUGIN_LINKAGE IFlowPlugin* CreateInstance();
PLUGIN_LINKAGE void DeleteInstance(IFlowPlugin* plugin);

with the implementations in the following form:

PLUGIN_INTERFACE IFlowPlugin* CreateInstance()
{
 IFlowPlugin* plugin = new MyDerivedFlowPlugin();
 return plugin;
}
PLUGIN_INTERFACE void DeleteInstance(IFlowPlugin* plugin)
{
 delete plugin;
}

You can find definitions of PLUGIN_LINKAGE and PLUGIN_INTERFACE in the [installation_path]
\nxcae_extras\tmg\include\plugin_prototype\pluginport.h file.

The following describes the interface methods:

// This function returns the current version to which the plug-in code is assumed to
link
virtual std::string GetVersion() = 0;

// This function is called by the solver after construction of the object. It could be
used to build the internal structure of the user defined plug-in class
virtual maya::cfd::ErrorFlag Construct(IFlowSolver* solver) = 0;

// This function is called by the solver once all the internal structure of the flow
solver is created and is available to be used
// It is only called once to allow the plug-in class to use the available data in the
flow solver, and initialize its internal data structure
virtual maya::cfd::ErrorFlag Initialize() = 0;

// This function is iteratively called by the solver at each non-linear iteration of a
transient time step, or at each steady state iteration
virtual maya::cfd::ErrorFlag Iterate() = 0;

Flow solver plugin interface

Flow Solver API Manual 7

You can find the definition of maya::cfd::ErrorFlag in [installation_path]
\nxcae_extras\tmg\include\maya\cfd\CfdDefinitions.h file.

The API object IFlowSolver* solver is the gateway to the internal functionality of the parallel flow solver. The following
sections describe how you can use this object and incorporate the implemented user plugin with the capabilities of the
flow solver.

You can find an example of a user plugin for the flow solver, including the compilation scripts for both Linux and
Windows operating systems in [installation_path]\nxcae_extras\tmg\plugin_examples\flow_solver folder.

Flow solver API classes

Flow Solver API Manual 8

•

•

•

•

Flow solver API classes
The C++ header files contain the API classes and methods that you can use in your plugin to expand the functionality of
the flow solver for your particular requirements.

Class IFlowPlugin is an interface class that includes virtual commands that communicate with the flow solver to
initialize, construct, iterate, and execute instances of class objects. Class IFlowPlugin is required for the API methods
to interact with the flow solver. For more information, see Class IFlowPlugin.

The following API classes provide the framework for extending the functionality of the flow solver:

Class Hub acts as the hub between Class BoundaryCondition, Class Equation, and Class Vector. It includes
API methods that instantiate and construct the Hub object. The Hub object acts as an interface between the API
classes and the flow solver and can access data defined in your flow model. For more information, see Class
Hub.
Class BoundaryCondition includes API methods that let you retrieve and control boundary conditions that are
created as loads, constraints, and simulation objects in your flow model. For more information, see Class
BoundaryCondition.
Class Equation includes API methods that let you create and solve generic transport equations. For more
information, see Class Equation.
Class Vector includes API methods that let you retrieve vector values, such as flow velocity, in your flow model.
For more information, see maya::cfd definitions.

Flow solver API classes

Flow Solver API Manual 9

The type of enumerators you can use as input arguments for the API method in your plugin are listed in the
CfdDefinitions file. For more information, see maya::cfd definitions.

Class Hub

Flow Solver API Manual 10

•

•
•

•

•

•

•

Class Hub
Class Hub in namespace maya::cfd is the interface between the API and the flow solver.

The following API methods are available in Class Hub:

Time step methods that access flow simulation time values, current time step size, and the energy time step
multiplier.
Simulation methods that access the temperature and pressure offset in the current independent fluid domains.
Vector methods that populate an array with pointers to the object of type maya::cfd::Vector and access the
maya::cfd::variable values defined separately for each independent fluid domain your solution.
An equation method that creates and returns an instance of the object of type maya::cfd::Equation that lets you
solve a generic transport equation. For more information, see Class Equation.
A boundary condition method that returns a pointer to an object of type maya::cfd::BoundaryCondition that lets
you retrieve boundary conditions and constraint values. For more information, see Class BoundaryCondition.
Track report methods that access track report simulation objects defined for the solution's current independent
fluid domain.
Parallel process communication methods that access the current parallel process to which the current instance
of Class IPlugin is associated and calculate the sum of double values for a local variable that is distributed over
all processes.

Hub methods

std::string GetVersion()

Returns the current version of the flow solver. It is important to check the version that is returned with this method is
up-to-date with any updates to the flow solver API.

double GetRelaxationFactor()

Returns a relaxation factor value that you can specify in your plugin classes to increase the stability of the flow solver
solution. The relaxation factor is defined using the RELAX_PLUGIN advanced parameter in the user.prm file. For more
information, see Setting plugin parameters.

Note

For the code examples in this section, it is assumed that you have instantiated and defined a
maya::cfd::Hub object named myServer in your plugin.

Class Hub

Flow Solver API Manual 11

double GetCurrentTime()

Returns the current flow simulation time that is defined for your solution.

double GetCurrentTimeStepSize()

Returns the current time step size that is used for advancing the simulation to the next simulation time. The next
simulation time equals the current simulation time plus the current time step size.

double GetEnergyTimeStepMultiplier()

Returns the energy time step multiplier. To accelerate the convergence in models that are mostly steady state (solved
variables that do not vary with respect to time) with a slow thermal process, a different time step size is used for
advancing the energy equation.

The energy equation time step size is obtained by multiplying the current time step size with the multiplier.

energy equation time step size=

GetCurrentTimeStepSize()*GetEnergyTimeStepMultiplier

size_t GetEnclosureID()

Returns the independent fluid domain identification index in the current model.

Example

size_t flowEnclId = myServer.GetEnclosureID()

void StopSimulation()

Stops the simulation run.

Class Hub

Flow Solver API Manual 12

void EnableEnergy()

Instantiates the flow solver energy transport equation, together with other transport equations, if the equation was not
initiated for your solution. The flow solver only solves an energy equation when a temperature constraint or a
volumetric heat load is defined. Using this method, the flow solver solves the energy equation, regardless of a
temperature constraint or a volumetric heat load.

Example

myServer.EnableEnergy()

void DisableScalars()

Excludes the passive scalar transport equations from the solution list at each iteration in the current simulation.

This method is provided for API classes that interact with specific models, in which the passive scalars are solved using
proprietary models.

double GetCurrentPressureOffset()

Returns the current value of the pressure offset in the current independent fluid domain. The pressure field is stored in
a relative form.

Returning absolute pressure

To return the absolute pressure, you include a method in an API class that adds the current value of the offset pressure
to the relative pressure.

The current value of the pressure offset can vary in time, and from one independent fluid domain to another.

To return the relative pressure, use the following command:

GetVector(maya::cfd::Variable::PRESSURE);

Class Hub

Flow Solver API Manual 13

double GetTemperatureOffset()

Returns the current value of the temperature offset in the current independent fluid domain as a fraction or whole
number. The temperature field is stored in a relative form.

Returning absolute temperature

To return the absolute temperature, the current value of the temperature offset must be added to the relative
temperature.

The current value of the temperature offset can vary in time and from one independent fluid domain to another.

To return the relative temperature, use the following command:

GetVector(maya::cfd::Variable::TEMPERATURE);

Vector* GetVector(maya::cfd::Variable vectorTitle, int species = -1)

Returns a pointer to an object of type maya::cfd::Vector that grants access to the maya::cfd::variable values that are
defined separately for each independent fluid domain in your solution.

Input arguments Type Description

vectorTitle maya::cfd::Variable The name of the variable from which you will
access the field values that you defined for each
independent fluid domain in your solution.

The supported variables are defined in the
CfdDefinitions.h file. For more information, see
maya::cfd Variable enumerators.

species int Optional and only permitted for variables that are
related to the species. The integer corresponds to
the index of the species in the mixture.

-1 is the default and corresponds to a single gas
configuration.

Example

int gasIndex = 1;

Class Hub

Flow Solver API Manual 14

maya::cfd::Vector* massFracGas =
myServer.GetVector(maya:cfd::Variable::GAS_MASS_FRACTION, gasIndex);
maya::cfd::Vector* density = myServer.GetVector(maya:cfd::Variable::DENSITY);

void GetGradientVector(Vector* gradient[3], maya::cfd::VariableGradient

vectorTitle, int species = -1)

Populates an array with pointers to the object of type maya::cfd::Vector. To populate the gradient vector field, you must
declare a gradient table with three rows. Each row will contain a vector pointer that represents three spatial
components, for example, x, y and z.

Input arguments Type Description

gradient array of 3 maya::cfd::Vector* The container that will store the gradient vector
field.

vectorTitle maya::cfd::VariableGradient The name of the gradient variable values from
which you will access the field values that you
defined for each independent fluid domain in your
solution.

The supported gradient variables are defined in
the CfdDefinitions.h file. For more information,
see maya::cfd VariableGradient enumerators.

species int Optional and only permitted for variables that are
related to the species. The integer corresponds to
the index of the species in the mixture.
-1 is the default and corresponds to a single gas
configuration.

Example

int gasIndex = 1;

maya::cfd::Vector* massFracGradGas[3];

myServer.GetGradientVector(massFracGradGas1, maya::cfd::Variable::GAS_MASS_FRACTION,
gasIndex);

maya::cfd::Vector* density[3];

Class Hub

Flow Solver API Manual 15

myServer.GetGradientVector(density, maya::cfd::Variable::DENSITY);

Equation* CreateNewEqation(std::string name,maya::cfd::ErrorFlag& errHandle)

Creates and returns an instance of the object of type maya::cfd::Equation. The maya::cfd::Equation object is a transport
equation that is solved by the flow solver. You can set the properties of the transport equation using the equation
methods defined in Class Equation. For more information, see Equation methods.

Input argument Type Description

name std::string Specifies the unique name of the equation to be created and solved.

Output arguments Type Description

errHandle maya::cfd::ErrorFlag References the ErrorFlag object that you must
define for your plugin, which will be used to report
any issues that occurred when creating the
equation

Example

maya::cfd::ErrorFlag errHandle = {true, ""};

maya::cfd::Equation* myEquation = myServer.CreateNewEqation(“myCustomEquation”,

errHandle);

size_t GetNumberOfCfdBcs(maya::cfd::BcType bcType)

Returns the number of boundary conditions for the specified maya::cfd::bctype condition type that are defined
in the current independent fluid domain in your solution. For more information on identifying the current independent
fluid domain, see size_t GetEnclosureID().

file:/D:/Flow-SOLVER_api_guide/guide_in_progress/guide/jm_CFD_server.docx#_size_t_GetEnclosureID():

Class Hub

Flow Solver API Manual 16

Input argument Type Description

bcType maya::cfd::bctype References the boundary condition type you
defined for your solution.

The supported boundary condition types are
defined in the CfdDefinitions.h file. For more
information, see maya::cfd BcType
enumerators.

Example

size_t numOfInlet = myServer.GetNumberOfCfdBcs(maya::cfd::BcType::INLET);

BoundaryCondition* GetCfdBc(maya::cfd::BcType bcType, size_t index)

Returns a pointer to an object of type maya::cfd::BoundaryCondition that lets you control certain boundary conditions
in the API classes that are created as simulation objects in your solution.

Input arguments Type Description

bcType maya::cfd::bctype Specifies and references the boundary condition
type you defined for your solution.

The supported boundary condition types are defined
in the CfdDefinitions.h file. For more information, see
maya::cfd BcType enumerators.

index size_t References an index in the array of the specified
boundary conditions.

The value of the index varies from zero to the
number of boundary conditions, minus one, of the
specified type in the current independent fluid
domain, which is obtained by calling
the size_t GetNumberOfCfdBcs(maya::cfd::BcType
bcType) API method.

Note

Class Hub

Flow Solver API Manual 17

Example

size_t openingBcIndex = 2;

maya::cfd::BoundaryCondition* openingBc2 =

myServer.GetCfdBc(maya::cfd::BcType::OPENING, openingBcIndex);

size_t GetNumberOfCfdTrackReports()

Returns the number of track report simulation objects defined for the solution's current independent fluid domain.

std::string GetCfdTrackReportName(size_t reportIndex)

Returns the track report simulation object name for the specified index.

Input argument Type Description

reportIndex size_t References an index in the array of the specified track
report simulation objects.

The index value varies from zero to the number of
track reports minus one.

reportIndex =

GetNumberOfCfdTrackReports - 1

double GetMinForCfdReportVariable(size_t reportIndex, maya::cfd::Variable

variableName, int species = -1)

 Returns the minimum value attained by the specified variable, in the region where the specified track report simulation
object is defined.

This method is not intended to provide access to the boundary conditions created and specified in
maya::cfd::Equation. For more information, see Class Equation.

Class Hub

Flow Solver API Manual 18

Input arguments Type Description

variableName maya::cfd::Variable Specifies the name of the variable type defined in
your solution from which you want to retrieve the
minimum value.

The supported variable types are defined in the
CfdDefinitions.h file. For more information, see
maya::cfd Variable enumerators.

species int Optional and only permitted for variables that are
related to the species. The integer corresponds to
the index of the species in the mixture.
-1 is the default and corresponds to a single gas
configuration.

Output
argument

Type Description

reportIndex size_t References an index in the array of the specified track report simulation
objects.

The index value varies from zero to the number of track reports minus
one.

reportIndex = GetNumberOfCfdTrackReports - 1

double GetMaxForCfdReportVariable(size_t reportIndex, maya::cfd::Variable

variableName, int species = -1)

Returns the maximum value, obtained by the specified variable, in the region where the specified track report
simulation object is defined.

Class Hub

Flow Solver API Manual 19

Input
arguments

Type Description

variableNam
e

maya::cfd::V
ariable

Specifies the name of the variable type defined in your solution from which you
want to retrieve the minimum value.

Thesupported variable types are defined in the CfdDefinitions.h file. For more
information, see maya::cfd Variable enumerators.

species integer Optional and only permitted for variables that are related to the species. The
integer corresponds to the index of the species in the mixture.

-1 is the default and corresponds to a single gas configuration.

Output argument Type Description

reportIndex size_t References an index in the array of the specified track report simulation
objects.

The index value varies from zero to the number of track reports minus
one.

reportIndex = size_t GetNumberOfCfdTrackReports - 1

double GetAvgForCfdReportVariable(size_t reportIndex, maya::cfd::Variable

variableName, int species = -1)

Returns the average value, obtained by the specified variable, in the region where the specified track report simulation
object is defined.

Class Hub

Flow Solver API Manual 20

Input arguments Type Description

variableName maya::cfd::Variable Specifies the name of the variable type defined in
your solution from which you want to retrieve the
minimum value.

The supported variable types are defined in in the
CfdDefinitions.h file. For more information, see
maya::cfd Variable enumerators.

species int Optional and only permitted for variables that are
related to the species. The integer corresponds to
the index of the species in the mixture.

-1 is the default and corresponds to a single gas
configuration.

reportIndex size_t References an index in the array of the specified
track report simulation object.

The index value varies from zero to the number of
track reports minus one.

reportIndex =

GetNumberOfCfdTrackReports - 1

size_t GetProcessId()

Returns the ID of the current parallel process to which the current instance of Class IPlugin is associated.

In parallel runs, a simulation can be run over multiple processes. Each process creates and attaches a new instance of
the Class IPlugin for each of the independent fluid domains in the model. For example, when a simulation for a model
includes two independent fluid domains, and runs on four processes, eight instances of Class IPlugin are created and
linked to the simulation. Two instances are created for each process.

Class Hub

Flow Solver API Manual 21

1.
2.
3.

void SumAll(double* localValues, double* globalValues, size_t numVals)

Computes the sum of double values for a local variable that is distributed over all processes. Its form is similar to the
MPI function MPI_Reduce.

To employ this method, you must declare arrays for localValues and globalValues and allocate sufficient memory to
store the double number values (numValues). The method performs the following:

Accesses the variables in the localValues array. These values are distributed over all processes.
Computes the sum of localValues that are type double and are of the same size.
Returns the sum to the array globalValues.

Input arguments Type Description

localValues double* References a pointer to the values in the localValues
array.

numVals size_t References the index in the array that stores the sum
of the values.

Output argument Type Description

globalValues double* References a pointer to the values in the
globalValues array.

Example

// This example has two processes (with ID #0 and #1)
size_t dim = 4;

if (myServer.GetProcessId() == 0)
{
double localValue [dim] = {1,2,3,4};
double globalValue [dim] = {0,0,0,0};

myServer.SumAll(localValue, globalValue, dim);
}
else if (myServer.GetProcessId() == 1)
{
double localValue [dim] = {5,6,7,8};
double globalValue [dim] = {0,0,0,0};

Class Hub

Flow Solver API Manual 22

myServer.SumAll(localValue, globalValue, dim);
}

// After the SumAll calls on each process, the globalValue = {1+5=6, 2+6=8, 3+7=10,
4+8=12} on both processes #0 and #1,

Class BoundaryCondition

Flow Solver API Manual 23

•
•
•
•

•
•

Class BoundaryCondition
Class BoundaryCondition instantiates and constructs the boundary conditions object class that includes methods that
you can define in your plugin to retrieve boundary conditions and constraint values. The flow solver interprets loads,
constraints, and simulation objects as boundary conditions.

Each instance of maya::cfd :: BoundaryCondition represents a simulation object or a load that you created
for your solution.

Using the boundary conditions class, you can define methods that retrieve:

The name of the boundary condition defined in your solution.
The number of selected elements and nodes for a specific boundary condition.
The global node index in a nodal fluid domain vector of the current independent fluid domain.
The volume of the control volume for a given local node index and the volume of an element in the boundary
condition element set. You can use this information for volumetric calculations.
A vector of boundary condition value vectors.
The element average value for a given element in the boundary condition selection.

BoundaryCondition methods

BoundaryCondition(ISolver * master, maya::cfd::BcType type, size_t handle)

Creates a boundary condition object using the constructor method of this object.

Input arguments Type Description

master ISolver* References the solver, which is accessible
through the maya::cfd::Hub object.

For more information, see IFlowPlugin
methods.

Note

For the code examples in this section, it is assumed that you have instantiated and defined a
maya::cfd::Hub object named myServer in your plugin.

Class BoundaryCondition

Flow Solver API Manual 24

Input arguments Type Description

Type maya::cfd::BcType References the boundary condition type you
defined for your solution.

The supported boundary condition variables
are defined in the CfdDefinitions.h file. For
more information, see maya::cfd Variable
enumerators.

Output arguments Type Description

handle size_t An index that is attributed to the new boundary condition,
which will reference it within the list of specified
boundary condition types.

Example

size_t newBcIndex = 0;

maya::cfd::BoundaryCondition myNewOpeningBc(mySever.GetMaster(),

maya::cfd::BcType::OPENING, newBcIndex);

BoundaryCondition* GetCfdBc(maya:cfd::BcType bcType, size_t index)

Returns the boundary conditions that are defined in your solution.

Input arguments Type Description

bcType maya::cfd::BcType References the boundary condition type you defined
for your solution.
The supported boundary condition types are defined
in the CfdDefinitions.h file. For more information, see
maya::cfd BcType enumerators.

Class BoundaryCondition

Flow Solver API Manual 25

Input arguments Type Description

index size_t References an index in the array of the specified
boundary condition types.

The value of the index varies from zero to the
number of boundary conditions, minus one, of the
specified type in the current independent fluid
domain, which is obtained by calling the size_t G

etNumberOfCfdBcs(maya::cfd::BcType

bcType) API method.

Example

size_t openingBcIndex = 2;

maya::cfd::BoundaryCondition* openingBc2 =

myServer.GetCfdBc(maya::cfd::BcType::OPENING, openingBcIndex);

std::string GetName():

Returns the name of the boundary condition (simulation object, load, or constraint) defined in your solution.

size_t GetNumberOfElements():

Returns the number of selected elements for a specific boundary condition.

Each boundary condition is defined over a set of elements.

size_t GetNumberOfLocalNodes():

Returns the number of selected nodes for a specific boundary condition.

Class BoundaryCondition

Flow Solver API Manual 26

The element set is comprised of a set of nodes.

size_t GetNodeIndexInVector(size_t n):

Returns the global node index in the fluid domain, using the local node index in the boundary condition selection.

Each fluid domain is decomposed into many partitions. Each process has one partition of the fluid domain. The nodal
solution vectors are locally defined over an entire partition. The node index in a boundary condition set is different from
the one in the nodal solution vectors. This method returns the index of a node in the nodal solution vector. You can use
this information to obtain solution values such a pressure, velocity or temperature for a given node.

Input argument Type Description

n size_t Returns the global node index in a nodal fluid domain
vector of the current independent fluid domain, using the
local node index in the boundary condition selection.

double GetNodeVolume(size_t n):

Returns the volume of the control volume for a given local node index.

You can use this information for volumetric calculations.

Input argument Type

n size_t Returns the global node index in a nodal fluid domain
vector of the current independent fluid domain, using the
local node index in the boundary condition selection.

std::vector<Vector*> GetBcValueVectors():

Returns a vector of boundary condition value vectors.

A value vector corresponds to the elemental value of a specific physical quantity defined at the boundary condition.

Class BoundaryCondition

Flow Solver API Manual 27

The indices are element indices. These elements are part of an element set that define the boundary selection.

You can use this vector to control the boundary condition values during the solution process.

The following lists the values that can be modified for each boundary condition type.

Boundary Condition Type Number of Components Vector Description

WALL UNSUPPORTED UNSUPPORTED

INLET UNSUPPORTED UNSUPPORTED

OUTLET UNSUPPORTED UNSUPPORTED

OPENING UNSUPPORTED UNSUPPORTED

VOLUMETRIC_HEAT_GENERATION 1 Volumetric Heat Source

double GetVectorElementValue(size_t elemIndex, Vector* vec):

Returns the element average value for a given element in the boundary condition selection.

Input argument Type Description

vec Vector* Specifies a pointer to nodal field vector for a
maya::cfd::Variable that was obtained with the
Vector* GetVector(maya::cfd::Variable

vectorTitle, int species = -1) method,
defined in Class Hub.

For more information, see Class Hub.

elemIndex size_t References the local index of the element in the
specified boundary condition set.

Example

Class BoundaryCondition

Flow Solver API Manual 28

size_t volHeatGenBcIndex = 0;

maya::cfd::BoundaryCondition* volHeatGenBc0 =
myServer.GetCfdBc(maya::cfd::BcType::VOLUMETRIC_HEAT_GENERATION,
volHeatGenBcIndex);

maya::cfd::Vector* heatLoad = myBc->GetBcValueVectors()[0];

size_t elemIndex = 1200;

double heatLoadAtElem= myBc.GetVectorElementValue(elemIndex,
heatLoad);

double GetElementVolume(size_t elemIndex):

Returns the volume of an element with the index elemIndex in the boundary condition element set.

You can use this information for volumetric calculations.

Input arguments Type Description

elemIndex size_t References the local index of the element in the
specified boundary condition element set.

Example

size_t openingBcIndex = 1;

maya::cfd::BoundaryCondition* openingBc1 =
myServer.GetCfdBc(maya::cfd::BcType::OPENING, openingBcIndex);

size_t elemIndex = 10;

double elemVol = openingBc1.GetElementVolume(elemIndex);

Class Equation

Flow Solver API Manual 29

•
•

•
•

•
•
•

Class Equation
Class Equation includes API methods that let you set, initialize, and solve a custom generic transport equation within
the flow solver. The equation object is constructed in Class Hub and must be called from this API class.

The Class Equation includes API methods that:

Initialize and solve the defined maya::cfd::Equation object within the flow solver.
Retrieve a vector object pointer containing the nodal value of the equation parameter in the solution.

You can define vector methods that:

Return the nodal vector of the custom scalar variable for which the equation is solved.
Populate a three-row array of maya::cfd Vector pointers with the nodal gradient of the custom scalar variable.

You can also define boundary condition methods that:

Retrieve the number of boundary conditions associated to the equation object.
Define how a custom equation scalar variable is set at a specified boundary condition of a particular type.
Specify the value of the scalar at the boundary.

Equation methods

Equation(IEquation* equation, ISolver * master, maya::cfd::ErrorFlag&
errHandle)

Creates an equation object using the constructor method of this object. The maya::cfd::Equation object is a transport
equation that is solved by the flow solver.

Input arguments Type Description

equation IEquation* Pointer to an IEquation object instance, which is the
interface class for the transport equation solver

master ISolver* Pointer to an object of type ISolver, which is the
interface to the flow solver

Note

For the code examples in this section, it is assumed that you have instantiated and defined a maya::cfd::Hub
object named myServer in your plugin.

Class Equation

Flow Solver API Manual 30

Output argument Type Description

errHandle maya::cfd::ErrorFlag References the object of type
maya::cfd::ErrorFlag that you must define for your
plugin. This will be used to report any issues that
occurred when creating the equation.

Vector* GetVariableVector():

Returns the nodal vector of the custom scalar variable for which the equation is solved.

void GetVariableGradientVector(Vector* gradient[3])

Populates a three-row array of maya::cfd::Vector pointers with the nodal gradient of the custom scalar variable.

Each maya::cfd::Vector in the array corresponds to a spatial component of the nodal gradient, for example, x, y, and z.

Input argument Type Description

gradient array of 3 maya::cfd::Vector* The container that will store the gradient
vector field.

size_t GetNumberOfBCs(maya::cfd::BcType bcType)

Returns the number of boundary conditions of type maya::cfd::BcType associated to the maya::cfd::equation object.

Input argument Type Description

bcType maya::cfd::BcType References the boundary condition type you
defined for your solution.
The supported boundary condition types are
defined in the CfdDefinitions.h file. For more
information, see maya::cfd BcType
enumerators.

Class Equation

Flow Solver API Manual 31

void SetBcMethod(maya::cfd::BcType bcType, maya::cfd::BcMethod bcMethod,
size_t bcIndex)

Defines how the custom equation scalar variable is set at a specified boundary condition of a particular type. You can
set the scalar variable as a specified value or assume to match a zero normal gradient profile at the boundary.

Input argument Type Description

bcType maya::cfd::BcType Specifies the boundary condition type that is
used in the solution. The supported boundary
condition types are defined in the
CfdDefinitions.h file. For more information, see
maya::cfd BcType enumerators.

bcMethod maya::cfd::BcMethod Specifies the type of method to define the
equation scalar variable at the desired boundary.
The supported boundary condition types are
defined in the CfdDefinitions.h file. For more
information, see maya::cfd BcMethod
enumerators.

bcIndex size_t References the boundary condition index with
which to set the method from the list of boundary
conditions with the same type.

Example

maya::cfd::ErrorFlagerrHandle = {true, ""};

std::string newEquationName = “MY_EQUATION”;

maya::cfd::Equation*
myNewEquation = myServer.CreateNewEquation(newEquationName, errHandle);

myNewEquation.SetBcMethod(maya::cfd::BcType::INLET,
maya::cfd::BcMethod::
VALUE_SPECIFIED, 0);

Class Equation

Flow Solver API Manual 32

Vector* GetBcVector(maya::cfd::BcType bcType, size_t bcIndex)

Returns a vector object pointer containing the element face value of the scalar at the specified boundary condition. You
can use this vector to specify the value of the scalar at the boundary, providing the boundary condition method that
points to the VALUE_SPECIFIED type in the CfdDefinitions.h file. For more information, see maya::cfd BcMethod
enumerators.

Input argument Type Description

bcType maya::cfd::BcType Specifies the boundary condition type in your
solution. The supported boundary condition types
are defined in the CfdDefinitions.h file. For more
information, see maya::cfd BcType enumerators.

bcIndex size_t References the boundary condition index to
retrieve the element face values from the list of
boundary conditions with the same type.

Vector* GetParameterVector(maya::cfd::EquationParameter param)

Returns a vector object pointer containing the nodal value of the specified equation parameter in the solution.

An equation parameter is the value of an equation coefficient or a source/sink term in this equation. The supported
equation parameter types are defined in the CfdDefinitions.h file. For more information, see maya::cfd
EquationParameter enumerators.

Input argument Type Description

param maya::cfd::EquationParameter Specifies the equation parameter defined in
your solution.

Example

Class Equation

Flow Solver API Manual 33

maya::cfd::ErrorFlag errHandle = {true, ""};
std::string newEquationName = “MY_EQUATION”;
maya::cfd::Equation* myNewEquation = myServer.CreateNewEquation(newEquationName,
errHandle);

maya::cfd::Vector* eqSrceTerm =
myNewEquation.GetParameterVector(maya::cfd::EquationParameter:: VOLUMETRIC_SOURCE_TERM);

Class Vector

Flow Solver API Manual 34

•
•

•

•

Class Vector
Class Vector lets you manage nodal or elemental field maya::cfd variable values that are defined separately for each
independent fluid domain in your solution domain. You can use these values in your plugin for statistical calculations.

For multiple processes and multiple independent fluid domain simulations, the number of Class IPlugin instances is
equal to the number of processes multiplied by the number of independent fluid domains. As a consequence, each
instance of IPlugin and, thereby, each maya::cfd::Vector object contains only a local portion of the all flow domain.

Instances of Class Vector can only be obtained through other API classes, such as Class Hub, Class Equation, or Class
BoundaryCondition. You cannot create new instances through its constructor.

The API methods in Class Vector:

Grant access to read or modify vector values.
Retrieve the size of the part of a vector that is local to the current process and specific to the current
independent fluid domain.
Retrieve the minimum and maximum value across all processes that are specific to the current independent
fluid domain.
Retrieve the algebraic average value across all processes that are specific to the current independent fluid
domain.

Vector methods

double operator[](const size_t index)

The bracket operator in this method grants read access to the vector values.

Input argument Type Description

index size_t References an index of the value in the vector and
ranges from zero to the size of the vector minus one.

virtual double& operator[](const size_t index)

The bracket operator in this method grants edit access to the vector values, meaning you can modify the values.

Note

For the code examples in this section, it is assumed that you have instantiated and defined a maya::cfd::Hub
object named myServer in your plugin.

Class Vector

Flow Solver API Manual 35

Input argument Type Description

index size_t References an index of the value in the vector and
ranges from zero to the size of the vector minus one.

The following is an example of using the bracket operator with vector objects:

// Example of how to use bracket operator with vector objects

maya::cfd::Vector& density = *(myServer.
GetVector(maya::cfd::Variable::DENSITY));

for(size_t i=0; i < density.GetSize(); ++i)
{

std::cout<<”density at node “<<i<<” =
”<<density[i]<<std::endl;

}

size_t GetSize()

Returns the size of the vector object that is local on the local processor.

In parallel runs, a simulation can be run over multiple processes. Each process creates and attaches a new instance of
the Class IPlugin for each of the independent fluid domains in the model. For example, when a simulation for a model
includes two independent fluid domains, and runs on four processes, eight instances of Class IPlugin are created and
linked to the simulation. Two instances are created for each process.

Note

Some of the vectors that are part of the solution field, such as velocity and pressure, are read only vectors and
cannot be modified by the mean of this operator.

Class Vector

Flow Solver API Manual 36

double GetMin()

Returns the minimum value found across all the processes in the vector object.

double GetMax()

Returns the maximum value found across all the processes in the vector object.

double GetMean()
Returns the algebraic average value across all the processes in the vector object.

maya::cfd definitions

Flow Solver API Manual 37

•
•
•
•

maya::cfd definitions
The CfdDefinitions header file defines the following types of enumurators that you can use as input arguments in API
methods:

maya::cfd variables and maya::cfd gradient variables
maya::cfd equation parameters
maya::cfd boundry condition types
maya::cfd boundry condition methods

The equation enumerators define the equation coefficient or a source/sink term that the flow solver computes. The
boundary condition methods define the equation scalar variable at the desired boundary for your model.

You can find the CfdDefinitions header file the [installation_path]\nxcae_extras\tmg\include folder.

maya::cfd Variable enumerators
DENSITY enum defines the density of the fluid.

DYNAMIC_VISCOSITY enum defines the dynamic viscosity of the fluid.

EFFECTIVE_VISCOSITY enum defines the sum of the turbulent viscosity (eddy viscosity) and dynamic viscosity.

EPS enum defines the dissipation rate of the turbulent kinetic energy for the k-epsilon turbulent models, such as
Standard, Renormalized Group (RNG), and Realizable.

GAS_MASS_FRACTION enum defines the mass fraction of the tracer fluid in the corresponding species in the mixture.

GAS_MASS_PRODUCTION_RATE enum defines the rate of a gas mass production.

HEAT_RATE enum defines the rate of heat generation.

maya::cfd definitions

Flow Solver API Manual 38

HUMIDITY_MASS_FRACTION enum defines a water vapor-to-mixture, such as water vapor and dry air mass fractions.

MAGNITUDE_ABSOLUTE_VELOCITY enum defines the norm of the absolute velocity.

MOLECULAR_DIFFUSION enum defines the binary molecular diffusion of the tracer fluid/corresponding species in the
mixture relative to the defined primary species.

OMG enum defines the specific dissipation rate of the turbulent kinetic energy for the turbulent model, such as k-omega
and shear stress transport (SST) models.

PRESSURE enum defines the static relative pressure.

SCHMIDT_NUMBER enum defines the ratio of momentum to mass diffusivity of the tracer fluid/corresponding species in
the mixture.

SOLID_TEMPERATURE enum defines the solid temperature.

TEMPERATURE enum defines the fluid relative temperature.

TRACER_MASS_FRACTION enum defines the tracer fluid mass fraction within the solved fluid.

TKE enum defines the turbulence kinetic energy.

U_VELOCITY enum defines the X-component of the velocity vector in the absolute frame of reference.

maya::cfd definitions

Flow Solver API Manual 39

V_VELOCITY enum defines the Y-component of the velocity vector in the absolute frame of reference.

W_VELOCITY enum defines the Z-component of the velocity vector in the absolute frame of reference.

X_MOMENTUM_SOURCE enum defines the x-component of momentum per time per volume.

Y_MOMENTUM_SOURCE enum defines the y-component of momentum per time per volume.

Z_MOMENTUM_SOURCE enum defines the z-component of momentum per time per volume.

maya::cfd VariableGradient enumerators
GAS_MASS_FRACTION enum defines the mass fraction gradient of the tracer fluid/corresponding species in the mixture.

maya::cfd EquationParameter enumerators
MOLECULAR_DIFFUSION enum defines the binary molecular diffusion of the tracer fluid/corresponding species in the
mixture relative to the defined primary species. The diffusion effect is included in the enthalpy and species mass
transport equations.

SCHMIDT_NUMBER enum defines the ratio of momentum to mass diffusivity of the tracer fluid/corresponding species in
the mixture. The diffusion effect is included in the enthalpy and species mass transport equations.

VOLUMETRIC_SOURCE_TERM enum defines a constant volumetric sources of mass, momentum, energy, turbulence,
and other scalar quantities in a fluid zone, or a source of energy for a solid zone in the scalar transport equation.

maya::cfd BcType enumerators
WALL enum defines a solid impermeable region represented by cell zones.

maya::cfd definitions

Flow Solver API Manual 40

•

•

•
•

•

•
•

INLET enum defines one of the following boundary condition that allows:

A fluid to enter the fluid domain at a known flow rate and location.

A fluid body to simulate static air through which the model moves.

OUTLET enum defines one of the following boundary condition that allows:

A fluid to leave the fluid domain at a known flow rate and location.
A fluid body to simulate static air through which the model moves.

OPENING enum defines an external opening that allows fluid to flow into or out of the 3D flow mesh domain.

VOLUMETRIC_HEAT_GENERATION enum defines a rate of volumetric heat generation.

maya::cfd BcMethod enumerators
VALUE_SPECIFIED enum applies a user-defined value to the specified boundary condition.

ZERO_NORMAL_GRADIENT enum specifies that the gradient is zero on the boundary condition

This enum is typically used for the following boundary conditon types:

Openings when the normal gradient of the boundary for the velocity field or transported quantities, such as
turbulent kinetic energy or dissipation rate are often set to 0.
Adiabatic walls when the temperature normal gradient at the wall is set to 0 on walls that do not conduct heat.
No-Slip Walls when the pressure normal gradient at the wall is often set to 0.

Typedef for enum class value error handling
The following method throws an exception when the enum class values are not defined correctly:

typedef std::pair<bool, std::string> ErrorHandle;

Supported flow plugin compilers

Flow Solver API Manual 41

Supported flow plugin compilers
API methods and classes must be compiled with the correct compiler to ensure compatibility with the libraries. The
following table shows the compiler version requirements at the time of publishing.

OS C++ compiler

Windows 10 Visual Studio (2019) VC14.29

Linux GCC 11.2.1

GCC = GNU Compiler Collection

Flow solver plugin workflow

Flow Solver API Manual 42

Flow solver plugin workflow

Action Description

(1) Use the API
methods and classes
in C++ in your plugin.

Write your plugin using the API methods and classes to modify the behavior of the
flow solver and extend the capabilities for thermal-flow solutions. For more
information on the classes and methods available to you, see Flow solver API classes.

You can find examples of the header files that contain the API classes and methods in
the include folder in the tmg patch.

(2) Link your plugin to
the flow solver and
define helper methods.

Derive your plugin class from the IPlugin class and redefine the methods of that class
in your plugin, so that the flow solver can build it, initialize it, and execute it. You must
also edit the UserPlugin.cpp file to link your plugin with the flow solver.

For more information, see Linking the plugin to the flow solver.

(3) Create your building
script

Create your building script to facilitate the compilation.

Your compilation script must be located in the same folder as plugin file. Make sure
that the version of your local compiler is identical to the version of the compiler used
in the script. For a list of the compatible compiler versions, see Supported flow plugin
compilers.

 You can find the building script examples in the flow_solver folder in the tmg patch.

(4) Compile the source
code.

Execute your building script to compile the source code for your plugin and generate a
DLL file.

For parallel simulations over multiple-node machines or a cluster, store the DLL at an
address that is accessible to all processes.

(5) Specify your
dynamically linked
library (DLL) file.

In Simcenter 3D, when you define your solution, you select the DLL file that contains
the plugin to interact with the parallel flow solver during a thermal-flow solve. For
instructions on this process, see Specify a flow user defined API file in the Simcenter
3D Help.

Linking the plugin to the flow solver
The UserPlugin.h and UserPlugin.cpp files act as the interface between the flow solver and the API classes.

Flow solver plugin workflow

Flow Solver API Manual 43

•

•

The UserPlugin.h file calls and terminates the instance of the IPlugin class, which you use to construct the internal
structure and data of the API classes in your plugin.

PLUGIN_LINKAGE IPlugin* CreateInstance();
PLUGIN_LINKAGE void DeleteInstance(IPlugin* plugin);

The methods in the UserPlugin.cpp file enable the flow solver to load and delete the instance of your plugin. In the
following example, GeneralModel is the name of the plugin file.

PLUGIN_INTERFACE IPlugin* CreateInstance()
{
 IPlugin* plugin = new GeneralModel();
 return plugin;
}
PLUGIN_INTERFACE void DeleteInstance(IPlugin* plugin)
{
 delete plugin;

Setting plugin parameters
With the user.prm file, you can add the following optional runtime parameters for your plugin:

RELAX_PLUGIN sets a relaxation factor to control the convergence of equations you build for your plugin, which
are solved with the flow solver.
PLUGIN_INITIAL_ITERATION sets the initial iteration to execute the Iterate method defined in your plugin.

Example of an API plugin for a generic transport equation

Flow Solver API Manual 44

•
•

•

•
•

Example of an API plugin for a generic transport equation
The following is an example of a plugin class, named GeneralModel that uses the flow solver API functionality to solve a
transport equation. The methods in this class apply a volumetric heat load to every fluid element of a thermal/flow
model. To use the GeneralModel class, the model must include one heat generation thermal load applied to the fluid
domain. In this example, the volumetric heat load is dependent on the fluid density.

Equation

where

 is the volumetric thermal load
 is the element average density.

Example of the GeneralModel header file
The header file for the GeneralModel defines the type for all the member variables that are used in
the GeneralModel class and includes the methods that:

Return a string value that corresponds to the version, including the patch number of the thermal/flow solvers to
use.
Throw an exception for incorrect construction for the internal structure of the API classes.
Throw an exception for incorrect construction for the internal data structure of the API classes.

For more information, see Class IFlowPlugin.

#ifndef GENERAL_MODEL_H
#define GENERAL_MODEL_H

#include "IPlugin.h"

#include <vector>

namespace maya::cfd
{
 class BoundaryCondition;
 class Hub;
 class Vector;
}

class GeneralModel : public IPlugin
{
public:

Example of an API plugin for a generic transport equation

Flow Solver API Manual 45

 GeneralModel();
 GeneralModel(const GeneralModel&) = delete;
 GeneralModel& operator= (const GeneralModel&) = delete;
 ~GeneralModel();

 // Functions
 // ---------
 virtual std::string GetVersion();

 virtual maya::cfd::ErrorFlag errHandle Construct(ISolver* solver);
 virtual maya::cfd::ErrorFlag errHandle Initialize();
 virtual maya::cfd::ErrorFlag errHandle Iterate ();

private:
// Defines the member variables

 const std::string m_version;
 maya::cfd::Hub * m_server;

 maya::cfd::BoundaryCondition* m_bc;

 maya::cfd::Vector* m_heatLoad;
 maya::cfd::Vector* m_density;

 // Functions
 // ---------
};
#endif

Example of the GeneralModel plugin class

include "GeneralModel.h"

#include <iostream>
#include <vector>

#include <BoundaryCondition.h>
#include <Hub.h>
#include <Equation.h>
#include <Vector.h>

GeneralModel::GeneralModel():
 m_version("12.0.0"),
 m_server(nullptr)

Example of an API plugin for a generic transport equation

Flow Solver API Manual 46

{
//m_version is the current version of the GeneralModel plug-in class. This member
variable is set to the version, including the patch number of the thermal/flow solvers
to use.
//m_server is the maya::cfd Hub object that lets you set, initialize, and solve a custom
generic transport equation within the flow solver.
}

GeneralModel::~GeneralModel()
{
}

std::string GeneralModel::GetVersion()
{
 return m_version;
}
//Returns the current version of the of the GeneralModel plug-in class.

maya::cfd::ErrorFlag GeneralModel::Construct(ISolver* solver)

//Instantiate the maya::cfd::Hub object and constructs the internal structure of the
GeneralModel plug-in class.

{
 maya::cfd::ErrorFlag errHandle = {true, ""};

 if (solver)
 {
 m_server = nnew maya::cfd::hub (solver, errHandle);

 if (errHandle.first)
 {
 if (m_server->GetVersion() != m_version)

// Lets you verify if the current version of GeneralModel plug-in class matches the flow
solver one (the version including the patch number of the thermal/flow solvers to use.)
 {
 errHandle = {false, "GeneralModelLibrary::Construct(): Version Mismatch
between plug-in and CFD Server library is detected!"};
 }
 else
 {
 // Request Energy Equation
 m_server->EnableEnergy();

// m_server turns on the resolution of the transport energy equation, in case it was not
set in the simulation.

Example of an API plugin for a generic transport equation

Flow Solver API Manual 47

 }
 }
 }
 else
 {
 errHandle = {false, "GeneralModelLibrary::Construct(): flow solver interface is
not defined!"};
 }

 return errHandle;
}

maya::cfd::ErrorFlag GeneralModel::Initialize()
{
// Initializes the GeneralModel plug-in class and makes sure the maya::cfd Hub object
has been instantiated.

 maya::cfd::ErrorFlag errHandle = {true, ""};
 if (!m_server)
 {
 errHandle = {false, "GeneralModelLibrary::Initialize(): The plug-in is not
contructed!"};
 }
 else
 {
 size_t numBcs = m_server-
>GetNumberOfCfdBcs(maya::cfd::BcType::VOLUMETRIC_HEAT_GENERATION);

//Returns the number of boundary conditions of type VOLUMETRIC_HEAT_GENERATION that are
defined in the current simulation.

 if (numBcs != 1)
 {
 errHandle = { false, "GeneralModelLibrary::Initialize(): Invalid number of
volumetric heat generation BCs!" };
 }
//Throws an excepction if there is more than one single volumetric heat generation BC.

 else
 {
 m_bc = m_server->GetCfdBc(maya::cfd::BcType::VOLUMETRIC_HEAT_GENERATION, 0);

//GetCfdBc retrieves the BoundaryCondition object of type VOLUMETRIC_HEAT_GENERATION
heat load and stores it in the member variable m_bc.

 m_heatLoad = m_bc->GetBcValueVectors()[0];

Example of an API plugin for a generic transport equation

Flow Solver API Manual 48

// GetBcValueVectors provides access to the values that define the boundary condition
for each element of the selection. For the VOLUMETRIC_HEAT_GENERATION boundary condition
type, only one single value is defined per element (heat load = scalar value). As you
will want to edit the heat load value for each element defining the boundary condition
selection, you use this method to fetch and store the BcValueVector pointer in the
maya::cfd::Vector pointer m_heatLoad.

 m_density = m_server->GetVector(maya::cfd::Variable::DENSITY);
 }
//Retrieves and stores the maya::cfd::Vector pointer to the density field calculated by
the flow solver.
 }

 return errHandle;
}

maya::cfd::ErrorFlag GeneralModel::Iterate()
{
// The flow solver calls this method at each iteration of a transient time step or at
each steady state iteration, to execute the sequence of actions you define.

 maya::cfd::Vector& heatLoad = *m_heatLoad;
 size_t numElems = m_heatLoad->GetSize();

// size_t numElems retrieves the number of elements that define the
VOLUMETRIC_HEAT_GENERATION vector.

 for (size_t e = 0; e != numElems; ++e)

// Loops over each element defining the VOLUMETRIC_HEAT_GENERATION heat load boundary
condition and edits the value of the heat load for each of one, using the element value
of the density.
 {
 double rho = m_bc->GetVectorElementValue(e, m_density);

// GetVectorElementValue allows you to extract the value of the density at a specific
element.

 heatLoad[e] = 1.0e4 * rho;
 }

 return {true, ""};
}

Email
info@mayahtt.com

Web
mayahtt.com

Tel.
+1.514.369.5706

Address
1100 Atwater Avenue, Suite 3000
Westmount, QC H3Z 2Y4 Canada

Better
know-how
Our engineers are skilled in numerical simulation, many
with advanced degrees and senior project management
experience. Their proficiency in thermal, flow and
structural analysis, helps build and analyze thousands
of individual components, subassemblies and entire
structures around the globe.

Drawing on a portfolio of leading thermal, flow and
structural solver technology, we support all stages of
the product development cycle. We know that better
methodologies leader tobetter design quality, even for
the most intricate designs, which means you can trust
Maya HTT to bring insight and understanding to the
most complex engineering efforts.

	Proprietary & Restricted Rights Notice
	Table of Contents
	Introduction to the flow solver API
	Flow solver plugin interface
	Flow solver API classes
	Class Hub
	Hub methods
	std::string GetVersion()
	double GetRelaxationFactor()
	double GetCurrentTime()
	double GetCurrentTimeStepSize()
	double GetEnergyTimeStepMultiplier()
	size_t GetEnclosureID()
	void StopSimulation()
	void EnableEnergy()
	void DisableScalars()
	double GetCurrentPressureOffset()
	double GetTemperatureOffset()
	Vector* GetVector(maya::cfd::Variable vectorTitle, int species = -1)
	void GetGradientVector(Vector* gradient[3], maya::cfd::VariableGradient vectorTitle, int species = -1)
	Equation* CreateNewEqation(std::string name,maya::cfd::ErrorFlag& errHandle)
	size_t GetNumberOfCfdBcs(maya::cfd::BcType bcType)
	BoundaryCondition* GetCfdBc(maya::cfd::BcType bcType, size_t index)
	size_t GetNumberOfCfdTrackReports()
	std::string GetCfdTrackReportName(size_t reportIndex)
	double GetMinForCfdReportVariable(size_t reportIndex, maya::cfd::Variable variableName, int species = -1)
	double GetMaxForCfdReportVariable(size_t reportIndex, maya::cfd::Variable variableName, int species = -1)
	double GetAvgForCfdReportVariable(size_t reportIndex, maya::cfd::Variable variableName, int species = -1)
	size_t GetProcessId()
	void SumAll(double* localValues, double* globalValues, size_t numVals)

	Class BoundaryCondition
	BoundaryCondition methods
	BoundaryCondition(ISolver * master, maya::cfd::BcType type, size_t handle)
	BoundaryCondition* GetCfdBc(maya:cfd::BcType bcType, size_t index)
	std::string GetName():
	size_t GetNumberOfElements():
	size_t GetNumberOfLocalNodes():
	size_t GetNodeIndexInVector(size_t n):
	double GetNodeVolume(size_t n):
	std::vector<Vector*> GetBcValueVectors():
	double GetVectorElementValue(size_t elemIndex, Vector* vec):
	double GetElementVolume(size_t elemIndex):

	Class Equation
	Equation methods
	Equation(IEquation* equation, ISolver * master, maya::cfd::ErrorFlag& errHandle)
	Vector* GetVariableVector():
	void GetVariableGradientVector(Vector* gradient[3])
	size_t GetNumberOfBCs(maya::cfd::BcType bcType)
	void SetBcMethod(maya::cfd::BcType bcType, maya::cfd::BcMethod bcMethod, size_t bcIndex)
	Vector* GetBcVector(maya::cfd::BcType bcType, size_t bcIndex)
	Vector* GetParameterVector(maya::cfd::EquationParameter param)

	Class Vector
	Vector methods
	double operator[](const size_t index)
	virtual double& operator[](const size_t index)
	double GetMin()
	double GetMax()
	double GetMean()

	maya::cfd definitions
	maya::cfd Variable enumerators
	maya::cfd VariableGradient enumerators
	maya::cfd EquationParameter enumerators
	maya::cfd BcType enumerators
	maya::cfd BcMethod enumerators
	Typedef for enum class value error handling

	Supported flow plugin compilers
	Flow solver plugin workflow
	Linking the plugin to the flow solver
	Setting plugin parameters

	Example of an API plugin for a generic transport equation
	Equation
	Example of the GeneralModel header file
	Example of the GeneralModel plugin class

